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On modern architectures, the performance of 32-bit operations is often at least twice as fast as the
performance of 64-bit operations. By using a combination of 32-bit and 64-bit floating point arithmetic,
the performance of many dense and sparse linear algebra algorithms can be significantly enhanced while
maintaining the 64-bit accuracy of the resulting solution. The approach presented here can apply not
only to conventional processors but also to other technologies such as Field Programmable Gate Arrays
(FPGA), Graphical Processing Units (GPU), and the STI Cell BE processor. Results on modern processor
architectures and the STI Cell BE are presented.

Program summary

Program title: ITER-REF
Catalogue identifier: AECO_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AECO_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 7211
No. of bytes in distributed program, including test data, etc.: 41 862
Distribution format: tar.gz
Programming language: FORTRAN 77
Computer: desktop, server
Operating system: Unix/Linux
RAM: 512 Mbytes
Classification: 4.8
External routines: BLAS (optional)
Nature of problem: On modern architectures, the performance of 32-bit operations is often at least twice
as fast as the performance of 64-bit operations. By using a combination of 32-bit and 64-bit floating
point arithmetic, the performance of many dense and sparse linear algebra algorithms can be significantly
enhanced while maintaining the 64-bit accuracy of the resulting solution.
Solution method: Mixed precision algorithms stem from the observation that, in many cases, a single
precision solution of a problem can be refined to the point where double precision accuracy is achieved.
A common approach to the solution of linear systems, either dense or sparse, is to perform the LU
factorization of the coefficient matrix using Gaussian elimination. First, the coefficient matrix A is
factored into the product of a lower triangular matrix L and an upper triangular matrix U . Partial row
pivoting is in general used to improve numerical stability resulting in a factorization P A = LU , where
P is a permutation matrix. The solution for the system is achieved by first solving Ly = Pb (forward
substitution) and then solving U x = y (backward substitution). Due to round-off errors, the computed
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solution, x, carries a numerical error magnified by the condition number of the coefficient matrix A. In
order to improve the computed solution, an iterative process can be applied, which produces a correction
to the computed solution at each iteration, which then yields the method that is commonly known as
the iterative refinement algorithm. Provided that the system is not too ill-conditioned, the algorithm
produces a solution correct to the working precision.
Running time: seconds/minutes

Published by Elsevier B.V.
1. Introduction

On modern architectures, the performance of 32-bit operations
is often at least twice as fast as the performance of 64-bit opera-
tions. There are two reasons for this. Firstly, 32-bit floating point
arithmetic is usually twice as fast as 64-bit floating point arith-
metic on most modern processors. Secondly the amount of bytes
moved through the memory system is halved. In Table 1, we pro-
vide some hardware numbers that support these claims. On AMD
Opteron 246, IBM PowerPC 970, and Intel Xeon 5100, the single
precision peak is twice the double precision peak. On the STI Cell
BE, the single precision peak is fourteen times the double preci-
sion peak. Not only single precision is faster than double preci-
sion on conventional processors but this is also the case on less
mainstream technologies such as Field Programmable Gate Arrays
(FPGA) and Graphical Processing Units (GPU). These speedup num-
bers tempt us and we would like to be able to benefit from it.

For several physics applications, results with 32-bit accuracy are
not an option and one really needs 64-bit accuracy maintained
throughout the computations. The obvious reason is for the ap-
plication to give an accurate answer. Also, 64-bit accuracy enables
most of the modern computational methods to be more stable;
therefore, in critical conditions, one must use 64-bit accuracy to
obtain an answer. In this manuscript, we present a methodology
of how to perform the bulk of the operations in 32-bit arithmetic,
then postprocess the 32-bit solution by refining it into a solution
that is 64-bit accurate. We present this methodology in the con-
text of solving a system of linear equations, be it sparse or dense,
symmetric positive definite or nonsymmetric, using either direct or
iterative methods. We believe that the approach outlined below is
quite general and should be considered by application developers
for their practical problems.

2. The idea behind mixed precision algorithms

Mixed precision algorithms stem from the observation that, in
many cases, a single precision solution of a problem can be re-
fined to the point where double precision accuracy is achieved.
The refinement can be accomplished, for instance, by means of the
Newton’s algorithm [1] which computes the zero of a function f (x)
according to the iterative formula

xn+1 = xn − f (xn)

f ′(xn)
. (1)

In general, we would compute a starting point and f ′(x) in single
precision arithmetic and the refinement process will be computed
in double precision arithmetic.

If the refinement process is cheaper than the initial computa-
tion of the solution then double precision accuracy can be achieved
nearly at the same speed as the single precision accuracy. Sec-
tions 2.1 and 2.2 describe how this concept can be applied to
solvers of linear systems based on direct and iterative methods,
respectively.
Table 1
Hardware and software details of the systems used for performance experiments.

Architecture Clock
[GHz]

Peak SP/
Peak DP

Memory
[MB]

BLAS Compiler

AMD Opteron 246 2.0 2 2048 Goto-1.13 Intel-9.1
IBM PowerPC 970 2.5 2 2048 Goto-1.13 IBM-8.1
Intel Xeon 5100 3.0 2 4096 Goto-1.13 Intel-9.1
STI Cell BE 3.2 14 512 – Cell SDK-1.1

1: LU ← P A (εs)
2: solve Ly = Pb (εs)
3: solve U x0 = y (εs)

do k = 1,2, . . .

4: rk ← b − Axk−1 (εd)
5: solve Ly = Prk (εs)
6: solve U zk = y (εs)
7: xk ← xk−1 + zk (εd)

check convergence
done

Algorithm 1. Mixed precision, Iterative Refinement for Direct Solvers.

2.1. Direct methods

A common approach to the solution of linear systems, either
dense or sparse, is to perform the LU factorization of the coeffi-
cient matrix using Gaussian elimination. First, the coefficient ma-
trix A is factored into the product of a lower triangular matrix L
and an upper triangular matrix U . Partial row pivoting is in gen-
eral used to improve numerical stability resulting in a factorization
P A = LU , where P is a permutation matrix. The solution for the
system is achieved by first solving Ly = Pb (forward substitution)
and then solving U x = y (backward substitution). Due to round-off
errors, the computed solution x carries a numerical error magni-
fied by the condition number of the coefficient matrix A.

In order to improve the computed solution, we can apply an
iterative process which produces a correction to the computed
solution at each iteration, which then yields the method that is
commonly known as the iterative refinement algorithm. As Demmel
points out [2], the nonlinearity of the round-off errors makes the
iterative refinement process equivalent to the Newton’s method
applied to the function f (x) = b − Ax. Provided that the system is
not too ill-conditioned, the algorithm produces a solution correct
to the working precision. Iterative refinement in double/double
precision is a fairly well understood concept and was analyzed by
Wilkinson [3], Moler [4] and Stewart [5].

The algorithm can be modified to use a mixed precision ap-
proach. The factorization P A = LU and the solution of the tri-
angular systems Ly = Pb and U x = y are computed using single
precision arithmetic. The residual calculation and the update of the
solution are computed using double precision arithmetic and the
original double precision coefficients (see Algorithm 1). The most
computationally expensive operation, the factorization of the co-
efficient matrix A, is performed using single precision arithmetic
and takes advantage of its higher speed. The only operations that
must be executed in double precision are the residual calculation
and the update of the solution (they are denoted with an εd in
Algorithm 1). We observe that the only operation with computa-
tional complexity of O(n3) is handled in single precision, while
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all operations performed in double precision are of at most O(n2)

complexity. The coefficient matrix A is converted to single preci-
sion for the LU factorization and the resulting factors are stored
in single precision while the initial coefficient matrix A needs to
be kept in memory. Therefore, one drawback of the following ap-
proach is that the it uses 50% more memory than the standard
double precision algorithm.

The method in Algorithm 1 can offer significant improvements
for the solution of a sparse linear system in many cases if:

1. single precision computation is significantly faster than double
precision computation;

2. the iterative refinement procedure converges in a small num-
ber of steps;

3. the cost of each iteration is small compared to the cost of the
system factorization. If the cost of each iteration is too high,
then a low number of iterations will result in a performance
loss with respect to the full double precision solver. In the
sparse case, for a fixed matrix size, both the cost of the sys-
tem factorization and the cost of the iterative refinement step
may substantially vary depending on the number of nonzeroes
and the matrix sparsity structure. In the dense case, results are
more predictable.

Note that the choice of the stopping criterion in the iterative
refinement process is critical. Formulas for the error computed at
each step of Algorithm 1 can be obtained for instance in [6,7].

2.2. Iterative methods

Direct methods are usually a very robust tool for the solution
of sparse linear systems. However, they suffer from fill-in which
results in high memory requirements, long execution time, and
nonoptimal scalability in parallel environments. To overcome these
limitations, various pivot reordering techniques are commonly ap-
plied to minimize the amount of generated fill-in and to enable
better exploitation of parallelism. Still, there are cases where direct
methods pose too high of a memory requirement or deliver poor
performance. A valid alternative are iterative methods even though
they are less robust and have a less predictable behavior. Iterative
methods do not require more memory than what is needed for
the original coefficient matrix. Further more, time to solution can
be better than that of direct methods if convergence is achieved in
relatively few iterations [8,9].

In the context of iterative methods, the refinement method out-
lined in Algorithm 1 can be represented as

xi+1 = xi + M(b − Axi), (2)

where M is (LU )−1 P . Iterative methods of this form (i.e. where M
does not depend on the iteration number i) are also known as
stationary. Matrix M can be as simple as a scalar value (the
method then becomes a modified Richardson iteration) or as com-
plex as (LU )−1 P . In either case, M is called a preconditioner. The
preconditioner should approximate A−1, and the quality of the ap-
proximation determines the convergence properties of (2). In gen-
eral, a preconditioner is intended to improve the robustness and
the efficiency of iterative methods. Note that (2) can also be in-
terpreted as a Richardson method’s iteration in solving M Ax = Mb
which is called left preconditioning. An alternative is to use right
preconditioning, whereby the original problem Ax = b is trans-
formed into a problem of solving

AMu = b, x = Mu

iteratively. Later on, we will use the right preconditioning for
mixed precision iterative methods.
1: for i = 0,1, . . . do
2: r = b − Axi (εd)
3: β = h1,0 = ‖r‖2 (εd)
4: check convergence and exit if done
5: for k = 1, . . . ,mout do
6: vk = r/hk,k−1 (εd)
7: Perform one cycle of GMRESSP(min) in order to (approximately)

solve Azk = vk (initial guess zk = 0) (εs)
8: r = Azk (εd)
9: for j = 1, . . . ,k do

10: h j,k = rT v j (εd)
11: r = r − h j,k v j (εd)
12: end for
13: hk+1,k = ‖r‖2 (εd)
14: end for
15: Define Zk = [z1, . . . , zk], Hk = {hi, j}1�i�k+1,1� j�k (εd)
16: Find yk , the vector of size k, that minimizes ‖βe1 − Hk yk‖2 (εd)
17: xi+1 = xi + Zk yk (εd)
18: end for

Algorithm 2. Mixed precision, inner–outer FGMRES(mout)-GMRESSP(min).

M needs to be easy to compute, apply, and store to guarantee
the overall efficiency. Note that these requirements were addressed
in the mixed precision direct methods above by replacing M (com-
ing from LU factorization of A followed by matrix inversion), with
its single precision representation so that arithmetic operations
can be performed more efficiently on it. Here however, we go two
steps further. We replace not only M by an inner loop which is
an incomplete iterative solver working in single precision arith-
metic [10]. Also, the outer loop is replaced by a more sophisticated
iterative method, e.g., based on Krylov subspace.

Note that replacing M by an iterative method leads to nest-
ing of two iterative methods. Variations of this type of nesting,
also known in the literature as an inner–outer iteration, have been
studied, both theoretically and computationally [11–17]. The gen-
eral appeal of these methods is that the computational speedup
hinders inner solver’s ability to use an approximation of the orig-
inal matrix A that is fast to apply. In our case, we use single
precision arithmetic matrix–vector product as a fast approxima-
tion of the double precision operator in the inner iterative solver.
Moreover, even if no faster matrix–vector product is available,
speedup can often be observed due to improved convergence (e.g.,
see [15], where Simoncini and Szyld explain the possible benefits
of FGMRES-GMRES over restarted GMRES).

To illustrate the above concepts, we demonstrate an inner–
outer nonsymmetric iterative solver in mixed precision. The solver
is based on the restarted Generalized Minimal RESidual (GMRES)
method. In particular, consider Algorithm 2, where the outer loop
uses the flexible GMRES (FGMRES [9,14]) and the inner loop uses
the GMRES in single precision arithmetic (denoted by GMRESSP).
FGMRES, being a minor modification of the standard GMRES, is
meant to accommodate non-constant preconditioners. Note that in
our case, this non-constant preconditioner is GMRESSP. The result-
ing method is denoted by FGMRES(mout)-GMRESSP(min) where min
is the restart for the inner loop and mout for the outer FGMRES.
Algorithm 2 checks for convergence every mout outer iterations.
Our actual implementation checks for convergence at every inner
iteration, this can be done with simple tricks at almost no compu-
tational cost.

The potential benefits of FGMRES compared to GMRES are be-
coming better understood [15]. Numerical experiments confirm
improvements in speed, robustness, and sometimes memory re-
quirements for these methods. For example, we show a maximum
speedup of close to 15 on the selected test problems. The mem-
ory requirements for the method are the matrix A in CRS format,
the nonzero matrix coefficients in single precision, 2mout number
of vectors in double precision, and min number of vectors in single
precision.
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Table 2
Test matrices for sparse mixed precision, iterative refinement solution methods.

n Matrix Size Nonzeroes Symm. Pos. def. C. num.

1 SiO 33401 1317655 yes no O (103)

2 Lin 25600 1766400 yes no O (105)

3 c-71 76638 859554 yes no O (10)

4 cage-11 39082 559722 no no O (1)

5 raefsky3 21200 1488768 no no O (10)

6 poisson3Db 85623 2374949 no no O (103)

The Generalized Conjugate Residuals (GCR) method [17,18] is
a possible replacement for FGMRES as the outer iterative solver.
Whether to choose GCR or FGMRES is not yet well understood.

As in the dense case, the choice of the stopping criterion in the
iterative refinement process is critical. In the sparse case, formulas
for the errors can be computed following the work of Arioli et
al. [19].

3. Performance results

The experimental results reported in this section were mea-
sured on the systems described in Table 1. At this moment no
software libraries are available to perform sparse computations on
the STI Cell BE architecture. For this reason, only mixed precision
iterative refinement solvers for dense linear systems are presented
for this architecture.

To measure the performance of sparse mixed precision solvers
based on both direct and iterative methods, the matrices described
in Table 2 were used.

Based on backward stability analysis, the solution x can be con-
sidered as accurate as the double precision one when

‖b − Ax‖2 � ‖x‖2 · ‖A‖2 · ε · √n,

where ‖ · ‖2 is the spectral norm. However, for the following ex-
periments, a full double precision solution is computed first and
then the mixed precision iterative refinement is stopped when the
computed solution is as accurate as the full double precision one.

3.1. Direct methods

3.1.1. Dense matrices
Mixed precision iterative refinement solvers were developed for

both symmetric and nonsymmetric dense linear systems by means
of the methods and subroutines provided by the BLAS [20–24] and
LAPACK [25] software packages. For the nonsymmetric case, step 1
in Algorithm 1 is implemented by means of the SGETRF sub-
routine, steps 2, 3 and 5, 6 with the SGETRS subroutine, step 4
with the DGEMM subroutine and step 7 with the DAXPY subrou-
tine. For the symmetric case the SGETRF, SGETRS and DGEMM
subroutines were replaced by the SPOTRF, SPOTRS and DSYMM
subroutines, respectively. Further details on these implementations
can be found in [26,27].

As already mentioned, iterative refinement solvers require 1.5
times as much memory as a regular double precision solver. It is
because the mixed precision iterative refinement solvers need to
store at the same time both the single precision and the double
precision versions of the coefficient matrix. It is true for dense as
well as sparse matrices.

Table 3 shows the speedup of the mixed precision, iterative re-
finement solvers for dense matrices with respect to full, double
precision solvers. These results show that the mixed precision it-
erative refinement method can run very close to the speed of the
full single precision solver while delivering the same accuracy as
the full double precision one. On the AMD Opteron, Intel Wood-
crest and IBM PowerPC architectures, the mixed precision, iterative
Table 3
Performance improvements for direct dense methods when going from a full double
precision solve (reference time) to a mixed precision solve.

Nonsymmetric Symmetric

AMD Opteron 246 1.82 1.54
IBM PowerPC 970 1.56 1.35
Intel Xeon 5100 1.56 1.43
STI Cell BE 8.62 10.64

solver can provide a speedup of up to 1.8 for the nonsymmetric
solver and 1.5 for the symmetric one for large enough problem
sizes. For small problem sizes the cost of even a few iterative
refinement iterations is high compared to the cost of the factoriza-
tion and thus the mixed precision iterative solver is less efficient
than the double precision one.

Parallel implementations of Algorithm 1 for the symmetric and
nonsymmetric cases have been produced in order to exploit the
full computational power of the Cell processor (see also Fig. 1).
Due to the large difference between the speed of single precision
and double precision floating point units,1 the mixed precision
solver performs up to 7 times faster than the double precision
peak in the nonsymmetric case and 11 times faster for the sym-
metric positive definite case. Implementation details for this case
can be found in [28,29].

3.1.2. Sparse matrices
Most sparse direct methods for solving linear systems of equa-

tions are variants of either multifrontal [30] or supernodal [31] fac-
torization approaches. Here, we focus only on multifrontal meth-
ods. For results on supernodal solvers see [32]. There are a number
of freely available packages that implement multifrontal meth-
ods. We have chosen for our tests a software package called
MUMPS [33–35]. The main reason for selecting this software is
that it is implemented in both single and double precision, which
is not the case for other freely available multifrontal solvers such
as UMFPACK [36–38].

Using the MUMPS package for solving systems of linear equa-
tions comprises of three separate steps:

1. System Analysis: in this phase the system sparsity structure is
analyzed in order to estimate the element fill-in, which pro-
vides an estimate of the memory that will be allocated in
the following steps. Also, pivoting is performed based on the
structure of A + AT , ignoring numerical values. Only integer
operations are performed at this step.

2. Matrix Factorization: in this phase the P A = LU factorization
is performed. This is the computationally most expensive step
of the system solution.

3. System Solution: the system is solved in two steps: Ly = Pb
and U x = y.

The Analysis and Factorization phases correspond to step 1 in
Algorithm 1 while the solution phase correspond to steps 2, 3 and
5, 6.

The speedup of the mixed precision, iterative refinement ap-
proach over the double precision one for sparse direct methods is
shown in Table 4, and Fig. 2. The figure reports the performance
ratio between the full single precision and full double precision
solvers (light colored bars) and the mixed precision and full-double
precision solvers (dark colored bars) for six matrices from real
world applications. The number on top of each bar shows how

1 As indicated in Table 1, the peak for single precision operations is 14 times
more than the peak for double precision operations on the STI Cell BE.
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Fig. 1. Mixed precision, iterative refinement method for the solution of dense linear systems on the STI Cell BE processor.
Table 4
Performance improvements for direct sparse methods when going from a full dou-
ble precision solve (reference time) to a mixed precision solve.

Matrix number

1 2 3 4 5 6

AMD Opteron 246 1.827 1.783 1.580 1.858 1.846 1.611
IBM PowerPC 970 1.393 1.321 1.217 1.859 1.801 1.463
Intel Xeon 5100 1.799 1.630 1.554 1.768 1.728 1.524

Fig. 2. Mixed precision, iterative refinement with the MUMPS direct solver on an
Intel Woodcrest 3.0 GHz system.

many iterations are performed by the mixed precision, iterative
method to achieve double precision accuracy.

3.2. Iterative methods

Similar to the case of sparse direct solvers, we demonstrate the
numerical performance of Algorithm 2 on the architectures from
Table 1 and on the matrices from Table 2.

Fig. 3 (left) shows the performance ratio of the mixed preci-
sion inner–outer FGMRES-GMRESSP vs. the full double precision
inner–outer FGMRES-GMRESDP. In other words, we compare two
inner–outer algorithms that are virtually the same. The only differ-
ence is that their inner loop’s incomplete solvers are performed in
correspondingly single and double precision arithmetic.

Fig. 3 (right) shows the performance ratio of the mixed pre-
cision inner–outer FGMRES-GMRESSP vs. double precision GMRES.
This is an experiment that shows that inner–outer type iterative
methods may be very competitive compared to their original coun-
terparts. For example, we observe a speedup for matrix #2 of up to
6 which is mostly due to an improved convergence of the inner–
outer GMRES vs. standard GMRES. In particular, about 3.5 of the
5.5-fold speedup for matrix # 2 on the IBM PowerPC architecture
is due to improved convergence, and the rest 1.57 speedup is due
to single vs double precision arithmetic. The restart values used for
this computation are given in Table 5. The restart values min and
mout were manually tuned, m was taken as 2mout + min in order
to use the same amount of memory space for the two different
methods, or additionally increased when needed to improve the
reference GMRES solution times.

4. Numerical remarks

Following the work of Skeel [39], Higham [40] gives error
bounds for the single and double precision, iterative refinement al-
gorithm when the entire algorithm is implemented with the same
precision (single or double, respectively). Higham also gives error
bounds in single precision arithmetic, with refinement performed
in double precision arithmetic [40]. The error analysis in double
precision, for our mixed precision algorithm (Algorithm 1), is given
by Langou et al. [27]. Arioli and Duff [41] gives the error analysis
for a mixed precision algorithm based on a double precision FGM-
RES preconditioned by a single precision LU factorization. These
errors bounds explain that mixed precision iterative refinement
will work as long as the condition number of the coefficient matrix
is smaller than the inverse of the lower precision used. For prac-
tical reasons, we need to resort to the standard double precision
solver in the cases when the condition number of the coefficient
matrix is larger than the inverse of the lower precision used.

In Fig. 4, we show the number of iterations needed for our
mixed precision method to converge to better accuracy than the
one of the associated double precision solve. The number of it-
erations is shown as a function of the condition number of the
coefficient matrix (κ ) in the context of direct dense nonsymmet-
ric solve. For each condition number, we have taken 200 random
matrices of size 200-by-200 with a prescribed condition number
and we report the mean number of iterations until convergence.
The maximum number of iterations allowed was set to 30 so that
30 means failure to converge (as opposed to convergence in 30 it-
erations). Datta [42] has conjectured that the number of iterations
necessary for convergence was given by⌈

ln(εd)

ln(ε ) + ln(κ)

⌉
.

d
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Fig. 3. Mixed precision iterative refinement with FGMRES-GMRESSP from Algorithm 2 vs. FGMRES-GMRESDP (left) and vs. full double precision GMRES (right).
Table 5
Restart values for the GMRES-based iterative solvers.

Matrix n min mout m

1 30 20 150
2 20 10 40
3 100 9 300
4 10 4 18
5 20 20 300
6 20 10 50

Fig. 4. Number of iterations needed for our mixed precision method to converge
to an accuracy better than the one of the associated double precision solve as a
function of the condition number of the coefficient matrix in the context of direct
dense nonsymmetric solves.

We can generalize this formula in the context of our mixed preci-
sion approach

⌈
ln(εd)

ln(εs) + ln(κ)

⌉
.

When κεs is above 1, then the formula is not valid anymore. This
is characterized in practice by an infinite number of iterations, i.e.
lack of convergence of the method.
Table 6
Iterative refinement in quadruple precision on a Intel Xeon 3.2 GHz.

n QGESV
time (s)

QDGESV
time (s)

Speedup

100 0.29 0.03 9.5
200 2.27 0.10 20.9
300 7.61 0.24 30.5
400 17.81 0.44 40.4
500 34.71 0.69 49.7
600 60.11 1.01 59.0
700 94.95 1.38 68.7
800 141.75 1.83 77.3
900 201.81 2.33 86.3

1000 276.94 2.92 94.8

Table 7
Time for the various Kernels in the Quadruple Accuracy Versions for n = 900.

Driver name Time (s) Kernel name Time (s)

QGESV 201.81 QGETRF 201.1293
QGETRS 0.6845

QDGESV 2.33 DGETRF 0.3200
DGETRS 0.0127
DLANGE 0.0042
DGECON 0.0363
QGEMV 1.5526
ITERREF 1.9258

5. Extension to quadruple precision

As an extension to this study, we present in this section results
for iterative refinement in quadruple precision on an Intel Xeon
3.2 GHz. The iterative refinement code computes a condition num-
ber estimate for input matrices having random entries drawn from
a uniform distribution. For quadruple precision arithmetic, we use
the reference BLAS compiled with the Intel Fortran compiler ifort
(with -O3 optimization flag on) since we do not have an optimized
BLAS in quadruple precision. The version of the compiler is 8.1. Re-
sults are presented in Table 6. The obtained accuracy is between
10 and 32 for QGETRF and QDGETRF as expected. No more than 3
steps of iterative refinement are needed. The speedup is between
10 for a matrix of size 100 to close to 100 for a matrix of size
1000. In Table 7, we give the time for the different kernels used
in QGESV and QDGESV. Interestingly enough the time for QDGESV
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is dominated by QGEMV and not DGETRF! Recent research using
related idea can be found in [43].

6. Extension to other algorithms

Mixed precision algorithms can easily provide substantial speed-
up for very little code effort by mainly taking into account existing
hardware properties.

We have shown how to derive mixed precision version of va-
riety of algorithms for solving general linear systems of equations.
Mixed precision iterative refinement technique has also be used
in the context of symmetric positive definite systems [28] using
a Cholesky factorization. In the context of overdetermined least
squares problems, the iterative refinement technique can be ap-
plied to the augmented system (where both the solution and the
residual are refined, as described in [44]), to the QR factorization,
to the semi-normal equations or to the normal equations [45].
Iterative refinement can also be applied for eigenvalue computa-
tion [46] and for singular value computation [47].

We hope this manuscript will encourage scientists to extend
this approach to their own applications that do not necessarily
originate from linear algebra.

7. Conclusions

The main conclusion of the research presented in this paper is
that in mixed-precision algorithms can provide performance bene-
fits in solving linear systems of equations using dense direct meth-
ods, sparse direct methods and sparse iterative methods. If the
problem being solved is well conditioned, most of the computa-
tional work can be performed in single (32-bit) precision and full
(64-bit) precision can be recovered by a small amount of extra
work.

8. Description of the individual software components

mixed-precision.c Provides a simple example of invoking the
DSGESV routine to solve a dense linear system of equations
using mixed precision approach (single/double). The code per-
forms memory allocation, data initialization, invokes the solver
and, after calculations complete, reports accuracy of the solu-
tion, number of refinement steps and performance in Gflop/s.
The code demonstrates the use of legacy FORTRAN BLAS inter-
face as well as CBLAS interface.

dsgesv.f Implements the main routine solving dense system of lin-
ear equations using the technique of iterative refinement to
achieve the speed of single precision arithmetics, while pro-
viding double precision results. Relies on BLAS and a number
of FORTRAN routines to provide the required building blocks
for the computation.

*.f The remaining FORTRAN routines in the top-level directory
implement all the necessary components of the DSGESV rou-
tine and rely on a set of BLAS for the basic linear algebra
operations.

BLAS/ Contains reference FORTRAN implementation of all the BLAS
routines required by the algorithm, which can be used if opti-
mized BLAS library is not available. In such case, however, only
a small fraction of achievable performance will be delivered.

Makefile.reference_BLAS Contains makefile to compile a stand-
alone version of the code, which does not require the BLAS
library. The routines from the ../BLAS subdirectory are com-
piled and linked in instead. Invokes GFORTRAN and GCC to
compile the source code.

Makefile.optimized_BLAS Contains an example makefile to com-
pile the code on an Intel system using the BLAS provided by
the Math Kernel Library (MKL). Invokes Intel ICC and IFORT to
compile the source code.
9. Installation instructions

The code can be compiled on any system where GCC and GFOR-
TRAN compilers are available by invoking the command:

> make -f Makefile.reference_BLAS

However, only mediocre performance will be observed. It is
strongly suggested that the code is linked with an optimized im-
plementation of the BLAS library, such as MKL or ACML. In order to
do so the user needs to modify Makefile.optimized_BLAS to reflect
the configuration of the system and invoke it as follows:

> make -f Makefile.optimized_BLAS

10. Test run description

The compilation process produces the executable “mixed_preci-
sion”, which can be invoked to test the code. The program takes
problem size as its sole argument. To test the accuracy and perfor-
mance of the code for a problem defined by a 1000x1000 matrix,
one can type at command prompt:

> mixed_precision 1000

Different results will be obtained depending on the BLAS imple-
mentation used, the compiler optimizations used and the values of
the random data initializations. As long as the number of refine-
ment steps is less than 5 and the residual norm is O (1.0e–12) the
installation can be deemed to be working correctly.
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