
Parallel Block Hessenberg Reduction using
Algorithms-By-Tiles for Multicore Architectures

Revisited
LAPACK Working Note #208

Hatem Ltaief1, Jakub Kurzak1, and Jack Dongarra1,2,3?

1 Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville

2 Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee

3 School of Mathematics & School of Computer Science,
University of Manchester

{ltaief, kurzak, dongarra}@eecs.utk.edu

Abstract. The objective of this paper is to extend and redesign the
block matrix reduction applied for the family of two-sided factorizations,
introduced by Dongarra et al. [9], to the context of multicore architec-
tures using algorithms-by-tiles. In particular, the Block Hessenberg Re-
duction is very often used as a pre-processing step in solving dense linear
algebra problems, such as the standard eigenvalue problem. Although
expensive, orthogonal transformations are commonly used for this re-
duction because they guarantee stability, as opposed to Gaussian Elimi-
nation. Two versions of the Block Hessenberg Reduction are presented in
this paper, the first one with Householder reflectors and the second one
with Givens rotations. A short investigation on variants of Fast Givens
Rotations is also mentioned. Furthermore, in the last Top500 list from
June 2008, 98% of the fastest parallel systems in the world are based
on multicores. The emerging petascale systems consisting of hundreds
of thousands of cores have exacerbated the problem even more and it
becomes judicious to efficiently integrate existing or new numerical lin-
ear algebra algorithms suitable for such hardwares. By exploiting the
concepts of algorithms-by-tiles in the multicore environment (i.e., high
level of parallelism with fine granularity and high performance data rep-
resentation combined with a dynamic data driven execution), the Block
Hessenberg Reduction presented here achieves 72% of the DGEMM peak
on a 12000× 12000 matrix with 16 Intel Tigerton 2.4 GHz processors.

1 Introduction

The objective of this paper is to extend and redesign the block matrix reduc-
tion applied for the family of two-sided factorizations, e.g., Hessenberg, Tri-
diagonalization, Bi-diagonalization, introduced by Dongarra et al. [9], to the
? Research reported here was partially supported by the National Science Foundation

and Microsoft Research.

context of multicore architectures using algorithms-by-tiles. In particular, Hes-
senberg Reduction (HR) is very often used as a pre-processing step in solv-
ing dense linear algebra problems, such as the standard EigenValue Problem
(EVP) [12]:

(A − λ) x = 0,
with A ∈ IRn×n, x ∈ IRn, λ ∈ IR.

The need to solve EVPs emerges from various computational science dis-
ciplines e.g., structural engineering, electronic structure calculations, computa-
tional fluid dynamics, and also, in information technology e.g., search engines
rank websites [14]. The basic idea is to transform the dense matrix A to an upper
Hessenberg form H by applying successive transformations from the left (Q) as
well as from the right (QT) as follows:

H = Q × A × QT ,

A ∈ IRn×n , Q ∈ IRn×n , H ∈ IRn×n.

In this paper, we will look only at the first stage of HR, which goes from
the original dense matrix A to a block Hessenberg matrix Hb with b being the
number of sub-diagonals. The second stage, which annihilates those additional
b sub-diagonals, is not examined in this paper but will appear in a companion
one. This two-stage transformation process is also explained by Kagstrom et. al
in [15] for the QZ algorithm. Although expensive, orthogonal transformations are
accepted techniques and commonly used for this reduction because they guaran-
tee stability, as opposed to elementarily transformations similar to what is used
in Gaussian elimination [22]. Two versions of the Block Hessenberg Reduction
(BHR) algorithms are presented, the first one with Householder reflectors and
the second one with Givens Rotations. A short investigation on variants of Fast
Givens Rotations is also mentioned, but the work in this direction had to be
resumed in favor of standard Givens Rotations because of a predictable bad im-
pact on parallel performance. The main reasons will be pointed out later in the
paper.

Furthermore, in the last Top500 list from June 2008 [1], 98% of the fastest
parallel systems in the world are based on multicores. The emerging petascale
systems consisting of hundreds of thousands of cores have exacerbated the prob-
lem even more and it becomes judicious to efficiently integrate existing or new
numerical linear algebra algorithms suitable for such hardwares. As discussed by
Buttari et al. in [7], a combination of several parameters define the concept of
algorithms-by-tiles and are essential to match the architecture associated with
the cores: (1) Fine Granularity to reach a high level of parallelism and to fit
the core small caches; (2) Asynchronicity to prevent any global barriers; (3)
Block Data Layout (BDL), a high performance data representation to perform
efficient memory access; and (4) Dynamic Data Driven Scheduler to ensure any
enqueued tasks can immediately be processed as soon as all their data depen-
dencies are satisfied. While bullets (1) and (3) represent important items for

2

one-sided and two-sided transformations, (2) and (4) are even more critical for
two-sided transformations because of the tremendous amount of tasks generated
by such transformations. Indeed, as a comparison, the algorithmic complexity for
the QR factorization used for least squares problems is 4/3 n3 while it is 10/3 n3

for the HR algorithm, with n the matrix size. On the other hand, previous work
done by Kurzak et. al show how the characteristics of tiled algorithms perfectly
match the architectural features of the high performance Cell Broadband Engine
processor [16, 17].

The reminder of this document is organized as follows: Section 2 recalls the
standard HR algorithm and reviews the two orthogonal transformations based
on Householder reflectors and Givens rotations. Section 3 describes the imple-
mentation of the parallel tiled BHR algorithm. Section 4 presents performance
results of the two versions. Also, comparison tests are run on shared-memory
architectures against the state of the art, high performance dense linear algebra
software libraries, LAPACK [4] and ScaLAPACK [8]. Section 5 gives a detailed
overview of previous projects in this area. Finally, section 6 summarizes the
results of this paper and presents the ongoing work.

2 The Standard HR

In this section, we review the original HR algorithm as well as the orthogonal
transformations based on Householder reflectors and Givens rotations. A short
discussion on Fast Givens rotations is also included.

2.1 The Algorithm with Householder Reflectors

The standard HR algorithm based on Householder reflectors is written as fol-
lows:

Algorithm 1 Hessenberg Reduction with Householder reflectors
1: for j = 1 to n− 2 do
2: x = Aj+1:n,j

3: vj = sign(x1) ||x||2 e1 + x
4: vj = vj / ||vj ||2
5: Aj+1:n,j:n = Aj+1:n,j:n − 2 vj (v∗j Aj+1:n,j:n)
6: A1:n,j+1:n = A1:n,j+1:n − 2 (Aj+1:n,j:n vj) v∗j
7: end for

Algorithm 1 takes as input the dense matrix A and gives as output the matrix in
Hessenberg form. The reflectors vj could be saved in the lower part of A for stor-
age purposes and used later if necessary. The bulk of the computation is located
in line 5 and in line 6 in which the reflectors are applied to A from the left and
then from the right, respectively. 4 flops are needed to annihilate one element
of the matrix which makes the total number of operations for such algorithm

3

10/3 n3 (the lower order terms are neglected). It is obvious that algorithm 1 is
not efficient as described, especially because it is based on matrix-vector opera-
tions. Also, a single entire column is reduced at a time, which engenders a large
stride access of memory. The whole idea is to transform this algorithm to work
on tiles instead in order to improve data locality and cache reuse and to generate
as much as possible matrix-matrix operations .

In the next section, we present a quite similar algorithm using Standard
Givens rotations.

2.2 The Algorithm with Standard Givens Rotations

The Givens rotation matrix is a rank-2 modification of the identity matrix and
can be represented as follows:

g(i, j, θ) =



1
. . .

c s

1
. . .

1
−s c

. . .
1



, (1)

g ∈ IRn×n, c = cos(θ), s = sin(θ), c2 + s2 = 1.

Let x, y ∈ IRn. We have:

y = g(i, j, θ)T × x with yk =

 c×xi−s×xj , if k = i
s×xi+c×xj , if k = j
xk, otherwise.

(2)

The multiplication g(i, j, θ)T × x is a counterclockwise rotation of x through
an angle θ in the (i,j) plane and affects only the rows i and j. Therefore, if we
want yj = 0, then c = xi√

x2
i +x2

j

; s = −xj√
x2

i +x2
j

. In the same manner, this rotation

can be applied from the right, i.e., x × g(j, i, θ), and only columns j and i are
involved. For the sake of simplicity, we omit θ in the formulation of the Givens
rotations in the next algorithm.

The standard HR algorithm based on Givens rotations is written as in algo-
rithm 2. The cost to annihilate one element of the matrix with Givens rotations
is 6 flops (equation 2), which gives an overall operation count of 5n3, 50% more
compared to the same reduction with Householder reflectors. And this does
not include the cost of accumulating the local Givens matrices in line 5. Thus,

4

Algorithm 2 Hessenberg Reduction with Givens rotations
1: G ⇐ Idn

2: for j = 1, 2 to n− 2 do
3: for i = n, n− 1 to j + 2 do
4: Build the local g(i− 1, i) such that Ai,j = 0
5: Accumulate G = g(i− 1, i)×G
6: Update A = gT (i− 1, i)×A
7: Update A = A× g(i, i− 1)
8: end for
9: end for

although their implementations are much simpler than Householder reflectors,
Givens rotations are expected to poorly perform for the HR algorithm, if used
as in algorithm 2, due to the predominance of vector-vector operations and to
the overhead of cache misses. But, as seen later in section 3, some of those limi-
tations can be overcome, however the whole algorithm can still benefit from the
concepts of algorithms-by-tiles.

The next section introduces the Fast Givens Rotations (FGRs), which are as
expensive as Householder reflectors and still considered as orthogonal similarity,
i.e., stable.

2.3 Discussion on Fast Givens Rotations

The main problem with standard Givens rotations is the two additional flops
needed to annihilate one element of the matrix.

First introduced by Gentleman [10] and then by Hammarling [13] for the
QR-decomposition, FGRs are interesting because it only requires 4 flops to an-
nihilate one element of the matrix. However, there are major issues of arithmetic
underflow or overflow and the proposed way to fix it actually creates overhead
and may not improve performance, especially in the context of multicores.

Rath [19] applied FGRs to the Jacobi method, the reduction to Hessenberg
form and the QR-algorithm for Hessenberg matrices. The novelty of his approach
allows us to eliminate the computation of the square roots for the computation
of cosine and sine. However, a close monitoring has to be done to avoid un-
der/overflow and occasionally the matrix A has to be rescaled.

Anda and Park [3] introduced the Self-Scaling Chained FGRs, which delete
the periodic rescaling that has been necessary to guard against under/overflow.
While they focused only on the orthogonal one-sided transformations, their work
could be easily extended to two-sided transformations. The idea basically is to
decompose A as follows:

A = D Y, with A, D and Y ∈ IRn×n,

with a diagonal matrix D and the scaled matrix Y . The goal is to dynamically
scale the diagonal factor matrix D to be close to an identity matrix. For example,

5

let us compute the new matrix Â with the three bottom left elements annihilated:

Â(3) = D(3) Y (3)

= D(3) F (2) Y (2)

= D(3) F (2) F (1) Y (1).

with F representing the 2× 2 FGR matrix. F has this typical simplified form:

F =

[
1 0

β 1

]
×

[
1 α

0 1

]
, α and β ∈ IR, (3)

and can be expressed up to eight different ways to ensure the diagonal elements
of the matrix D stay within an absolute bound after any rotations. So, in the
general case, we have:

Â(k+1) = D(k+1) F (k) F (k−1) ... F (1) Y (1). (4)

A bookkeeping procedure has to be established to save each specific form of
the chosen matrices F during the reduction. Unfortunately, this prevents an
automatic construction of the global matrix G as implemented in algorithm 2
(line 5) for the standard HR based on Givens rotations. Therefore, this presents
a major complexity for efficiently accumulating FGR matrices.

On the other hand, the achievement of 4 flops per zeroed element is done
by using chained FGRs. Let yk be the kth row of the matrix Y and ŷk the
corresponding transformed kth row of the matrix Y . By plugging equation (3)
into equation (4), we end up with the following equation:[

ŷi

ŷj

]
= F ×

[
yi

yj

]

=

[
1 0

β 1

]
×

[
1 α

0 1

]
×

[
yi

yj

]

=

[
yi+α×yj

yj+β×(yi + αyj)

]
. (5)

The component ŷi has to be computed first and then its value is used to obtain
the final result for the component ŷj . While this is suitable for vector processors,
it is expected to perform poorly in cache-based architectures due to memory
overheads. Thus, even though more expensive, standard Givens rotations are
preferred to FGRs.

In the next section, we explain the modifications applied in algorithms 1
and 2 to achieve high performance using the concepts of algorithms-by-tiles.

6

3 The Parallel Tile BHR Algorithm

We present two parallel implementations of the BHR based on Householder
reflectors and Givens rotations. The algorithmic complexity for the BHR is
10/3 n (n − b) (n − b), with b being the tile size. So, compared to the full HR
complexity, i.e., 10/3 n3, the BHR algorithm is doing O(n2 b) less flops, which is
a negligible expense of the overall HR algorithm cost. By using updating factor-
ization techniques as suggested in [12, 5], the kernels for both implementations
can be applied to square blocks or tiles of the original matrix. Also, thanks
to fine granularity and BDL, the memory access management is significantly
ameliorated.

3.1 Description of the Fast Orthogonal Transformation Kernels

Householder reflectors

The tiled BHR kernels based on Householder reflectors are identical to the
ones used by Buttari et. al in [7] for the QR factorization. Basically, DGEQRT
is used to do a QR blocked factorization using the WY technique for efficiently
accumulating the Householder reflectors [20]. The DLARFB kernel comes from
the LAPACK distribution and is used to apply a block of Householder reflec-
tors. DTSQRT performs a block QR factorization of a matrix composed of two
tiles, a triangular tile on top of a dense square tile. DSSRFB updates the ma-
trix formed by coupling two square blocks and applying the resulting DTSQRT
transformations. [7] gives a detailed description of the different kernels. However,
minor modifications are needed for the DLARFB and DSSRFB kernels in order
to apply the updates on the right side. Moreover, since the right orthogonal
transformations do not destroy the zeroed structure and do not bring any fill-in
elements, the computed reflectors can be stored in the lower annihilated part of
the original matrix for later use. Although the algorithms work for rectangular
matrices, for simplicity purposes, let us only focus on square matrices. Let NBT
be the number of tiles in each direction. The tiled BHR algorithm with House-
holder reflectors then appears as follows:
The characters ”L” and ”R” stand for Left and Right updates. In each kernel
call, the triplets (i, ii, iii) specify the tile location in the original matrix, as in
figure 1: (i) corresponds to the reduction step in the general algorithm, (ii) gives
the row index and (iii) represents the indice of the column. For example, in
figure 1(a), the blue tiles represent the final data tiles, the white tiles are the
zeroed tiles, the gray tiles are those which need to be processed and finally, the
black tile corresponds to DTSQRT(1,4,1). In figure 1(b), the top black tile is
DLARFB(”R”,3,1,4) while the bottom one is DLARFB(”L”,3,4,5).
These kernels are very rich in matrix-matrix operations. By working on small
tiles with BDL, the elements are stored contiguous in memory and thus the
access pattern to memory is more regular, which makes these kernels high per-
formant.

7

Algorithm 3 Tiled BHR Algorithm with Householder reflectors.
1: for i = 1, 2 to NBT−1 do
2: DGEQRT(i, i + 1, i)
3: for j = i + 1 to NBT do
4: DLARFB(”L”, i, i + 1 , j)
5: end for
6: for j = 1 to NBT do
7: DLARFB(”R”, i, j, i + 1)
8: end for
9: for k = i + 2 to NBT do

10: DTSQRT(i, k, i)
11: for j = i + 1 to NBT do
12: DSSRFB(”L”, i, k, j)
13: end for
14: for j = 1 to NBT do
15: DSSRFB(”R”, i, j, k)
16: end for
17: end for
18: end for

In the following subsection, we present a similar BHR approach based exclu-
sively on Givens rotations.

Givens rotations

The kernels of the BHR algorithm with Givens rotations are much simpler
than those with Householder reflectors. Except for the factorization kernels, all
are straight calls to the BLAS library. The skeleton of algorithm 4 with Givens
rotations is exactly the same as algorithm 3 with Householder reflectors. The
first factorization kernel named DGEQRG is implemented to produce a block
QR factorization applied on a square tile of size b with Givens rotations. The
goal is obviously to find a way to overcome the overhead of the accumulation of
the local Givens matrices g(i,j) in order to generate matrix-matrix operations for
the left and the right updates. By using a recursive formula, as explained by Gill
et. al in [11], the accumulation of the Givens matrices does not present a limita-
tion anymore and its cost becomes almost negligible. While the first column is
being annihilated, the local Givens matrices are accumulated and then they are
applied at once to the rest of the tile, as is done for DGEQRT with Householder
reflectors. As the elimination procedure takes place, a larger Givens matrix is
built that corresponds to the product of all local Givens matrices g(i,j), again
by using the technique described in [11]. Finally, DGEQRG gives as output the
upper triangular tile as well as a dense Givens rotation matrix Gb, used later for
the updates. The components c and s of the Givens matrix can also be saved
in a single element (see Stewart in [21]) and stored in the lower zeroes part of
the tile. The DGEMM kernels in algorithm 4, lines (4, 7) perform the product
of Gb by the tile specified in the triplets, from left and right respectively. The

8

(a) BHR: Reduction Step 1. (b) BHR: Reduction Step 3.

Fig. 1. BHR algorithm applied on a tiled Matrix with NBT= 5.

second factorization called DTSQRG applies a blocked QR factorization on a
matrix of size 2b × b composed of a triangular tile on top of a square tile. This
kernel inherits the properties of the annihilation procedure described above for
the DGEQRG kernel, by using the top upper triangular tile as a reference. As a
matter of fact, DTSQRG yields an upper triangular matrix of size 2b× b and a
Givens rotation square matrix G2×b, which has the shape depicted in figure 2.
The updates, either left or right lines (12, 15), are straightforward; a call to
DTRMM for the lower triangular structure followed by a call to DGEMM for
the upper square structure achieves the desired transformations.

Figure 3 and 4 illustrate the step-by-step execution of algorithms 3 and 4,
with Householder reflectors and Givens rotations, respectively, in order to elim-
inate the first tile column. It appears necessary then to efficiently schedule the
kernels to get high performance in parallel.

In the following part, we present a dynamic data driven execution scheduler
that ensures the small tasks (or kernels) generated by algorithms 3 and 4 are
processed as soon as their respective dependencies are satisfied.

3.2 Dynamic Data Driven Execution

A dynamic scheduling scheme similar to [7] has been extended for the two-sided
orthogonal transformations. A Directed Acyclic Graph (DAG) is used to repre-
sent the data flow between the nodes/kernels. While the DAG is quite easy to
draw for small number of tiles, it becomes very complex when the number of
tiles increases and it is even more difficult to process than the one created by
the one-sided orthogonal transformations. Indeed, the right updates impose ro-
bust constraints on the scheduler by filling up the DAG with multiple additional

9

Algorithm 4 Tiled BHR Algorithm with Givens rotations.
1: for i = 1, 2 to NBT−1 do
2: DGEQRG(i, i + 1, i)
3: for j = i + 1 to NBT do
4: DGEMM(i, i + 1 , j)
5: end for
6: for j = 1 to NBT do
7: DGEMM(i, j, i + 1)
8: end for
9: for k = i + 2 to NBT do

10: DTSQRG(i, k, i)
11: for j = i + 1 to NBT do
12: DTRMM DGEMM(i, k, j)
13: end for
14: for j = 1 to NBT do
15: DTRMM DGEMM(i, j, k)
16: end for
17: end for
18: end for

edges. The implementation of the scheduler has to be lightweight to minimize the
overhead on the overall application performance. Also, the dynamic scheduler
allows an out-of-order execution, and the idle time is very limited since there
are no global synchronization points between the threads. Figure 5 shows the
tracing of the dynamic data driven scheduler using eight cores, performing in
that particular experiment the BHR with Householder reflectors. The six differ-
ent kernels are clearly identified with their colors.

In the next section, we present the experimental results comparing our two
BHR implementations with the state of the art library, i.e. LAPACK [4], ScaLA-
PACK [8] and MKL V 10 [2].

4 Experimental Results

The experiments have been applied on two different shared memory Platforms:
(P1) a dual-socket quad-core Intel Itanium 2 1.6 GHz (eight total cores) with
16GB of memory, and (P2) a quad-socket quad-core Intel Tigerton 2.4 GHz (16
total cores) with 32GB of memory. Hand tuning based on empirical data has
been performed to determine the optimal block/tile size b for both implemen-
tations: 200 and 140 for the BHR algorithms with Householder reflectors and
Givens rotations were chosen, respectively.

Figure 6 shows the elapsed time in seconds for small and large matrix sizes on
(P1) with eight cores. The BHR algorithm based on Householder reflectors by far
outperforms the others: for a 12000× 12000 problem size, it runs approximately

10

Fig. 2. Givens rotation matrix produced by DTSQRG used during the update proce-
dures.

10 x faster than the full HR of ScaLAPACK, 8 x faster than the full HR of MKL
and LAPACK and 3 x faster than the BHR with Givens rotations. Figure 7(a)
presents the parallel performance in Gflops of the BHR algorithms on (P1). The
BHR implementation with Householder reflectors runs at 82% of the machine
theoretical peak of the system and at 92% of the DGEMM peak. Figure 7(b)
zooms in the four other implementations and the parallel performance of the
BHR with Givens rotations is significantly higher than the full HR of LAPACK,
ScaLAPACK and MKL.

The same experiments have been conducted on (P2) with 16 cores. Fig-
ure 8 shows the execution time in seconds for small and large matrix sizes. For
a 12000 × 12000 problem size, the BHR algorithm with Householder reflectors
roughly runs 30 x faster than MKL and LAPACK, 15 x faster than ScaLAPACK
and finally, 6 x faster than the BHR implementation with Givens rotation. Fig-
ure 9(a) presents the parallel performance in Gflops of the BHR algorithms. The
BHR algorithm with Householder reflectors scales quite well while the matrix
size increases, reaching 95 Gflops. It runs at 61% of the system theoretical peak
and 72% of the DGEMM peak. The zoom-in seen in figure 9(b) highlights the
weaknesses of the BHR algorithm with Givens rotations, i.e. the algorithm it-
self (50% more flops compared to Householder reflectors) and the non-optimized
hand-coded factorization kernels. But still, the BHR algorithm with Givens ro-
tations outperforms the full HR of MKL, LAPACK and ScaLAPACK. Note: the
full HR of ScaLAPACK is twice as fast as than the full HR of MKL and LA-
PACK thanks to the Two-dimensional Block Cyclic Distribution.

The following section briefly comments on the previous work done in HR
using two-sided orthogonal transformations.

11

DGEQRT / DGEQRG

DLARTG / DGEMM

DTSQRT / DTSQRG

DSSRFB / DTRMM_DGEMM

Fig. 3. Scheduling of the Left Orthogonal Transformation.

5 Related Work

In [18], the authors improved the performance of the HR algorithm with House-
holder reflectors included in LAPACK by shifting matrix-vector operations to
more efficient matrix-matrix operations using a new blocked algorithm. By effi-
ciently accumulating the reflectors and updating only the necessary blocks while
the reduction takes place, their algorithm achieves more computation in BLAS 3
than the LAPACK HR implementation and improves data locality while reduc-
ing cache traffic. However, the parallelism is only expressed in the multithreaded
BLAS using the fork-join approach, which definitely presents overhead due to
thread synchronizations.

The authors in [15] describe a sequential HR implementation in the context of
the QZ algorithm, based only on Givens rotations, which outperforms LAPACK.
By working on diamond shaped tiles and regrouping disjoint Givens rotation
sequences, their algorithm performs most of the computation in matrix-matrix
multiplications with increased data locality.

The authors in [6] describe a parallel BHR on distributed memory systems
using a two-dimensional mesh of processors. The factorization is done using
a binary tree approach, where multiple column blocks can be reduced at the
same time, which can ameliorate the overall parallel performance. Their imple-
mentation is hybrid, i.e., it combines Householder reflectors with Givens rota-
tions. While the reduction of the column blocks to triangular form is done using
Householder reflectors, those triangular column blocks are then annihilated us-
ing Givens rotations for sparsity purposes. Knowing the overhead of Givens ro-

12

ZEROED TILE

DLARTB / DGEMM

DSSRFB /
DTRMM_DGEMM

Fig. 4. Scheduling of the Right Orthogonal Transformation.

Fig. 5. Tracing of Dynamic Data Driven Execution with 8 cores.

tations over the Householder reflectors, reducing all blocks only by Householder
reflectors is probably more suitable.

6 Summary and Future Work

By exploiting the concepts of algorithms-by-tiles in the multicore environment,
i.e., high level of parallelism with fine granularity and high performance data
representation combined with a dynamic data driven execution, the BHR al-
gorithm with Householder reflectors achieves 72% (95 Gflops) of the DGEMM
peak on a 12000× 12000 matrix size with 16 Intel Tigerton 2.4 GHz cores. This
algorithm performs most of the operations in Level 3 BLAS and considerably
surpasses in performance the BHR algorithm with Givens rotations and the full
HR with MKL, LAPACK and ScaLAPACK. This work can be extended to the
rest of the family of the two-sided orthogonal transformations, i.e., block tri-

13

100 500 1000 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Matrix Size

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds

HouseHolder Block Hess
Givens Block Hess
MKL Full Hess
LAPACK Full Hess
ScaLAPACK Full Hess

(a) Small Data Size.

4000 6000 8000 10000 12000
0

200

400

600

800

1000

1200

1400

Matrix Size

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds

HouseHolder Block Hess
Givens Block Hess
MKL Full Hess
LAPACK Full Hess
ScaLAPACK Full Hess

(b) Large Data Size.

Fig. 6. Elapsed time in seconds for the Block Hessenberg Reduction on a dual-socket
quad-core Intel Itanium2 1.6 GHz with MKL BLAS V10.0.1.

0 2000 4000 6000 8000 10000 12000

5

10

15

20

25

30

35

40

45

50

55

60

Matrix Size

G
flo

ps

Theoritical Peak
DGEMM Peak
HouseHolder Block Hess
Givens Block Hess
MKL Full Hess
LAPACK Full Hess
ScaLAPACK Full Hess

(a) Performance comparisons.

0 2000 4000 6000 8000 10000 12000

2

4

6

8

10

12

14

16

18

Matrix Size

G
flo

ps

Givens Block Hess
MKL Full Hess
LAPACK Full Hess
ScaLAPACK Full Hess

(b) Zoom-in.

Fig. 7. Parallel Performance of the Block Hessenberg Reduction on a dual-socket quad-
core Intel Itanium2 1.6 GHz processors with MKL BLAS V10.0.1.

diagonalization and block bi-diagonalization reductions. These techniques can
also be applied to the regular generalized EVP.

7 Acknowledgment

The authors thank Julien Langou and Alfredo Buttari for their insightful com-
ments, which greatly helped to improve the quality of this article.

References

1. http://www.top500.org.
2. http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm.
3. A. A. Anda and H. Park. Fast plane rotations with dynamic scaling. SIAM J.

Matrix Anal. Appl., 15:162–174, 1994.

14

100 500 1000 2000
0

1

2

3

4

5

6

7

8

9

Matrix Size

E
la

ps
ed

T
im

e
in

 s
ec

on
ds

HouseHolder Block Hess
Givens Block Hess
MKL Full Hess
LAPACK Full Hess
Scalapack Full Hess

(a) Small Data Size.

4000 6000 8000 10000 12000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Matrix Size

E
la

ps
ed

T
im

e
in

 s
ec

on
ds

HouseHolder Block Hess
Givens Block Hess
MKL Full Hess
LAPACK Full Hess
Scalapack Full Hess

(b) Large Data Size.

Fig. 8. Elapsed time in seconds for the Block Hessenberg Reduction on a quad-socket
quad-core Intel Xeon 2.4 GHz processors with MKL BLAS V10.0.1.

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100

120

140

160

Matrix Size

G
flo

ps

Theoritical Peak
DGEMM Peak
HouseHolder Block Hess
Givens Block Hess
MKL Full Hess
LAPACK Full Hess
Scalapack Full Hess

(a) Performance comparisons.

0 2000 4000 6000 8000 10000 12000
0

5

10

15

20

25

30

Matrix Size

G
flo

ps

Givens Block Hess
MKL Full Hess
LAPACK Full Hess
Scalapack Full Hess

(b) Zoom-in.

Fig. 9. Parallel Performance of the Block Hessenberg Reduction on a quad-socket quad-
core Intel Xeon 2.4 GHz processors with MKL BLAS V10.0.1.

4. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
third edition, 1999.

5. M. Baboulin, L. Giraud, S. Gratton, and J. Langou. Parallel tools for solving
incremental dense least squares problems. application to space geodesy. To appear
in Journal of Algorithms and Computational Technology, 2(3), 2008.

6. M. W. Berry, J. J. Dongarra, and Y. Kim. A highly parallel algorithm for the reduc-
tion of a nonsymmetric matrix to block upper-Hessenberg form. LAPACK Work-
ing Note 68, Department of Computer Science, University of Tennessee, Knoxville,
inst-UT-CS:adr, feb 1994. UT-CS-94-221, February 1994.

7. A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. Parallel Tiled QR Factorization
for Multicore Architectures. LAPACK Working Note 191, July 2007.

8. J. Choi, J. Demmel, I. Dhillon, J. Dongarra, Ostrouchov, S., A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley. ScaLAPACK, a portable linear algebra library for

15

distributed memory computers-design issues and performance. Computer Physics
Communications, 97(1-2):1–15, 1996.

9. J. J. Dongarra, D. C. Sorensen, and S. J. Hammarling. Block reduction of matrices
to condensed forms for eigenvalue computations. Journal of Computational and
Applied Mathematics, 27(1–2):215–227, Sept. 1989. (LAPACK Working Note #2).

10. W. M. Gentleman. Least squares computations by Givens transformations without
square roots. J. Inst. Math. Appl., 12:329–336, 1973.

11. P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders. Methods for modifying
matrix factorizations. Math. Comp., 28:505–535, 1974.

12. G. H. Golub and C. F. Van Loan. Matrix Computation. John Hopkins Studies in
the Mathematical Sciences. Johns Hopkins University Press, Baltimore, Maryland,
third edition, 1996.

13. S. Hammarling. A note on modifications to the Givens plane rotations. J. Inst.
Maths Applics, 13:215–218, 1974.

14. T. H. Haveliwala and A. D. Kamvar. The second eigenvalue of the google matrix.
Technical report, Stanford University, Apr. 18 2003.

15. B. Kagstrom, D. Kressner, E. Quintana-Orti, and G. Quintana-Orti. Blocked
Algorithms for the Reduction to Hessenberg-Triangular Form Revisted. LAPACK
Working Note 198, February 2008.

16. J. Kurzak, A. Buttari, and J. J. Dongarra. Solving systems of linear equations on
the CELL processor using Cholesky factorization. IEEE Transactions on Parallel
and Distributed Systems, 19(9):1–11, Sept. 2008.

17. J. Kurzak and J. Dongarra. QR Factorization for the CELL Processor. LAPACK
Working Note 201, May 2008.

18. G. Quintana-Ort́ı and R. A. van de Geijn. Improving the performance of reduction
to Hessenberg form. ACM Trans. Math. Softw, 32(2):180–194, 2006.

19. W. Rath. Fast Givens rotations for orthogonal similarity transformations. Numer.
Math., 40:47–56, 1982.

20. R. Schreiber and C. Van Loan. A storage efficient WY representation for products
of householder transformations. SIAM J. Sci. Statist. Comput., 10:53–57, 1989.

21. G. W. Stewart. The economical storage of plane rotations. Numerische Mathe-
matik, 25:137–138, 1976.

22. L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadelphia, PA,
1997.

16

