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Abstract. We are concerned with the computation of electronic and
optical properties of quantum dots. Using the Energy SCAN (ESCAN)
method with empirical pseudopotentials, we compute interior eigenstates
around the band gap which determine their properties. Numerically, this
interior Hermitian eigenvalue problem poses several challenges, both with
respect to accuracy and efficiency. Using these criteria, we evaluate sev-
eral state-of-the art preconditioned iterative eigensolvers on a range of
CdSe quantum dots of various sizes. All the iterative eigensolvers are
seeking for the minimal eigenvalues of the folded operator with reference
shift in the band-gap. The tested methods include standard Conjugate-
Gradient (CG)-based Rayleigh-Quotient minimization, Locally Optimal
Block-Preconditioned CG (LOBPCG) and two variants of the Jacobi
Davidson method: JDQMR and GD+1. Our experimental results con-
clude that the Jacobi Davidson method is often the fastest.
Keywords: comput. nanotechnology, parallel eigensolvers, quantum dots

1 Introduction

The computation of electronic properties of large nano structures such as quan-
tum dots is an important field of current research. In this paper, we are interested
in electronic structure calculations based on the Kohn-Sham approximations and
leading to the solution of the effective single-particle Schrödinger equations

HΨi ≡

[

−
1

2
∇2 + V

]

Ψi = EiΨi. (1)

Here H denotes the approximate Hamiltonian. The atomic system is described
by the potential V which we assume as externally given empirical pseudopoten-
tial [1]. The set {Ψi} denotes the orthogonal wave-functions (eigenstates) and
{Ei} their corresponding energies. If the system has an electron with energy Ei,
then Ψi(r) describes the spatial probability distribution for the electron.

In the context of the Self-Consistent Field iteration [8], a large number of
eigenstates of (1) need to be computed [11]. On the other hand, only a small

number of eigenstates of (1) are often relevant for determining certain optical



and electronic properties. Our task is to compute these states at the top of the
valence and at the bottom of the conduction band to find the band gap. These
states typically lie in the middle of the spectrum with too large a distance from
the lowest (ground) state to efficiently compute all of them from the lowest up.

In a discrete finite plane-wave basis, Equation (1) directly translates into a
Hermitian eigenvalue problem and we use the same notation H for the matrix
in question. The discrete Laplacian is commonly computed in the plane wave
basis because it is diagonal. On the other hand, the discretized potential is com-
monly available only in real space. Thus the resulting H becomes only implicitly
available through matrix-vector products and via the Fast Fourier Transform
(FFT). This together with the system size requires the use of efficient iterative
eigenvalue methods.

Our parallel ESCAN method [1] uses a folded spectrum approach [17] to
find the interior eigenstates that we are looking for. Based on physical knowl-
edge about the system, a reference energy Eref is chosen and then the smallest
eigenvalues of the system (H−Eref )2 currently are computed via PCG Rayleigh-
Quotient minimization, see [17], the references in [5] and also [7, 3]. In our study,
we compare this method with two other state-of-the art iterative eigensolvers,
the LOBPCG [4] and some variants of the Jacobi-Davidson method [12].

The rest of this paper is organized as follows. Section 2 gives a brief overview
of the mathematical and computational properties of the iterative eigensolvers
being compared. Section 3 describes the setting for our experiments and the
results of our evaluation. Our conclusions are given in Section 4.

2 Overview of eigenvalue methods

The collection of iterative methods studied in this paper is subdivided in two
parts, the CG-based methods and the Jacobi-Davidson based methods.

The CG-based techniques successively minimize the Rayleigh quotient func-
tion f(xi) = (x∗iAxi)/(x

∗

i xi), where the gradient is given by ∇f(xi) =
Axi − xi(x

∗

iAxi)/(x
∗

i xi). Note that the gradient is the residual of the approx-
imate eigenvectors xi (ri = ∇f(xi)). Together with a suitable preconditioner,
this approach (PCG) has been used to solve a number of problems of practical
interest. In a blocked form the minimization is simultaneously applied to a set
of orthogonal vectors Xi. The LOBPCG method [16, 4] extends PCG by apply-
ing Rayleigh Ritz on span(Wi, Xi, Xi−1), where Wi = P∇f(Xi) = Pri for an
appropriate preconditioner P .

More recently, variants of Davidson’s method [2] proved to be very effec-
tive for solving a number of applications. Davidson’s original algorithm targeted
mainly the smallest eigenvalues of (strongly diagonal dominant) matrices arising
from applications in Chemistry. It relies on the fact that in the case of strongly
diagonal dominant matrices the inverse of the diagonal entries of this matrix lead
to a good approximation for the inverse of the matrix, i.e. diag(A)−1 ≈ A−1. In

this case, given an approximate eigenpair (x̂, θ̂) and the residual r = (θ̂I −A)x̂,

the vector obtained from t = (θ̂I − diag(A))−1r can be used to generate a new



vector to be added to the search subspace S. However, depending on A and θ̂,
the problem t = (θ̂ − diag(A))−1r may be ill-conditioned (in particular note

that this problem is singular if θ̂ is an eigenvalue of A. To remedy this situa-
tion, an orthogonal component correction has been proposed in conjunction with
Davidson’s algorithm [12]. This correction replaces t = (θ̂ − diag(A))−1r with
an approximate solution of the correction equation

(I − x̂x̂∗)(A− θ̂I)(I − x̂x̂∗)t = −r, x ⊥ t. (2)

This equation can be solved by using the QMR algorithm, for example. This
allows for the generation of more general search subspaces than the original
algorithm. In addition, whereas Davidson’s algorithm requires preconditioners
that accurately approximate the inverse of the given operator and that may in
fact lead to ill-conditioned problems, the solver for the correction equation (2)
can take great advantage of such preconditioners. We derive our Jacobi-Davidson
based method for ESCAN from the JaDa software (§2.5).

2.1 Folded spectrum method

Currently, all our methods are only able to find eigenvalues at the extreme of
the spectrum. Since we are interested only in the interior eigenvalues, we need
to apply a spectral transformation such that the interior eigenvalues become
extreme eigenvalues of another operator, then find these extreme eigenvalues
and transform them back to the original problem.

This approach is classically performed using a polynomial transformation, for
a detailed discussion see for example [10, 16]. In our case we simply choose the
polynomial of second order (x − Eref )2. The eigenvectors corresponding to the
minimum eigenvalues of (H−ErefI)

2 are the eigenvectors of H corresponding to
the eigenvalues that are closest to Eref . This approach is called folded spectrum.

Other polynomials can be used for example, the shift-and-invert technique [9]
considers the polynomial (x−Eref )−1, where the inverse operation is done by an
inner iterative linear solver at each step. In this case, the Lanczos and Arnoldi
algorithms [6] can be applied to the shifted and inverted operator (H −Eref I),
for a fixed Eref of interest. Although finding the extreme eigenvalues of
(H−ErefI)

−1 requires very few iterations, applying the operator (H−ErefI)
−1

at each step is extremely expensive and we have not found this method effective
in practice.

Even though the polynomial (x − Eref )2 transforms interior eigenvalues to
minimum eigenvalues, it also clusters quadratically those eigenvalues around
Eref , unfortunately. Typically the convergence with the operator (H − ErefI)

2

is much slower than the one with H .

Finally we note that in theory, the Jacobi-Davidson method is able to aim
effectively and directly at interior eigenvalues using an inner iteration scheme
(e.g. QMR). We have not this feature available in the current version of the
Jacobi-Davidson solver. This is work for the near future (see also [15]).



2.2 Preconditioner

All iterative methods studied in this paper allow for the use of a preconditioner.
The goal of the preconditioner in the case of the folded spectrum method is to
approximate the inverse of the matrix (H − Eref I)

2 where H is given in Eq. 1.
The preconditioner we use is diagonal and is applied in the Fourier space as

P = (I + (−
1

2
∇2 + Vavg − Eref )/Ek)2

where − 1

2
∇2 is the Laplacian (diagonal in the Fourier space), Eref is the shift

used in the folded spectrum, Vavg is the average potential and Ek is the average
kinetic energy of a given initial approximation of a wave function ψinit [18].

2.3 Banded PCG Method

The Banded-PCG method [17] is the original method used in ESCAN (see also [7,
3] and Algorithm 1). This algorithm is well-suited for this kind of problem and
has proven to be extremely efficient. The parameters of the algorithm are niter
and nline. numEvals is the number of eigenvalues we are looking for and A is
the folded matrix (H − Eref I)

2.

The loop in j from line 5 to line 16 is simply nline iterations of the nonlinear
Conjugate Gradient method applied to the Rayleigh Ritz minimization problem
on the operator (I −X(m)X(m)∗)A where X represents the already converged
eigenvalues. The process is repeated for all the eigenvalues sought (loop in m
from line 2 to 17) and a Rayleigh Ritz step and restart is performed as long as
the convergence is not obtained (loop in i from line 1 to 19). niter represents
the maximum number of outer iterations the algorithm is allowed to perform.

2.4 LOBPCG Method

LOBPCG stands for Locally Optimal Block-Preconditioned CG [4]. This meth-
ods is a block extension of the PCG method described in §2.3 with Rayleigh
Ritz minimization (instead of conjugate gradient minimization). Briefly, the
LOBPCG method can be described with the pseudo-code in Algorithm 2.

Note that the m and j loops from Algorithm 1 are replaced with just the blocked
computation of the preconditioned residual, and the Rayleigh-Ritz on span{Xi}
with Rayleigh-Ritz on span{Xi−1, Xi, R}. The direct implementation of this algo-
rithm becomes unstable as Xi−1 and Xi become closer and closer, and therefore
special care and modifications have to be taken (see [4]). In the experiments
presented in Section 3, we are using our own version of LOBPCG with a special
treatment to work on the folded spectrum operator (H −ErefI)

2 but to control
the accuracy using the Hamiltonian matrix H .



Algorithm 1 PCG Eigensolver

1: for i = 1, niter do

2: for m = 1, numEvals do

3: orthonormalize X(m) to X(1 : m − 1)
4: ax = A X(m)
5: for j = 1, nline do

6: λ(m) = X(m) · ax

7: if (||ax − λ(m) X(m)||2 < tol .or. j == nline) exit
8: rj+1 = (I − X(m) X(m)∗) ax

9: β =
rj+1·Prj+1

rj ·Prj

10: dj+1 = −P rj+1 + β dj

11: dj+1 = (I − X(m)X(m)∗)dj+1

12: γ = ||dj+1||
−1
2

13: θ = 0.5 |atan
2 γ dj+1·ax

λ(m)−γ2 dj+1·A dj+1
|

14: X(m) = cos(θ) X(m) + sin(θ) γ dj+1

15: ax = cos(θ) ax + sin(θ) γ A dj+1

16: end for

17: end for

18: [X, λ] = Rayleigh-Ritz on span{X}
19: end for

Algorithm 2 LOBPCG Eigensolver

1: for i = 1, niter do

2: R = P (A Xi − λ Xi)
3: check convergence criteria
4: [Xi, λ] = Rayleigh-Ritz on span{Xi, Xi−1, R}
5: end for

2.5 Jacobi Davidson Method

The Jacobi-Davidson method [12] used in our experiments is based on the JaDa
software. The JDQMR code is a JDQR version using QMR based on the clas-
sical Jacobi-Davidson [12] while GD+k is based on [14]. The code is in C with
additional functionality of the early block Fortran code described in [13].

JaDa is a multi-method code with a lot of parameters that enable us to sim-
ulate a number of methods. Among the useful parameters are maxBasisSize

which represents the maximum size of the search space, minRestartSize which
represents the number of vectors among the search space that are kept at each
restart, maxBlockSize which represents the block size used in the method,
maxPrevRetain which represents the number of vectors that are kept from the
previous restart (useful to simulate GD+k), maxInnerIterationsand relTolBase

which give stopping criteria for the inner iterations with QMR. The inner itera-
tions in the QMR solve are stopped when the number of iterations is greater than
maxInnerIterationsor when the residual is less than relTolBase# iterations.

Typically in our experiments, for the Jacobi-Davidson method, we will take

minRestartSize∼ 1/3 · maxBasisSize



The block size will always be set to one, and we always will keep one vector from
the previous restart (GD+1), i.e. maxBlockSize = 1, maxPrevRetain = 1.

Case maxInnerIterations= 0 gives rise to GD+1 (see [14]). When
maxInnerIterations = 30, relTolBase = 2.0 the method is called JDQMR
(see [12]). It is interesting to note that by setting the parameters of JaDa to

maxBasisSize = 3 ∗ maxBlockSize

minRestartSize= maxBlockSize

maxBlockSize = numEvals

maxPrevRetain = maxBlockSize

(and having maxInnerIterations set to 0) then the obtained method is very
close to LOBPCG. We call this variant JD-LOBPCG and our numerical exper-
iments confirm that JD-LOBPCG behaves like a CG-method. If we want to use
LOBPCG but not on the whole block of eigenvectors (when a large number of
eigenvalues is requested for example), one can set maxBlockSize to a smaller
value than numEvals, and then (hard-)locking will be used to to find all the
eigenvalues. We call this methods JD-LOBPCG+L.

3 Test results

We perform experiments on a set of four quantum dots of Cadmium-Selenium
of increasing size (see Figure 1 for a description of the quantum dots).

test case # atoms n Time matvec (s)

Cd20.Se19 39 11,331 0.005
Cd83.Se81 164 34,143 0.014

Cd232.Se235 467 75,645 0.043
Cd534.Se527 1061 141,625 0.105

Fig. 1. Time for a matrix-vector product as the number of atoms grows, see Fig. 2 for
a graphic visualization. n is the size of the matrix in the Fourier space.

The goal of the experiments is to compare the different iterative methods in
terms of time to solution and robustness.

The different methods compared are a set of four Conjugate-Gradient like
methods: Banded-PCG, LOBPCG, JD-LOBPCG, JD-LOBPCG+L, and two
Jacobi-Davidson like methods: GD+1 and JDQMR. See Section 2 for a descrip-
tion of the methods.

The default parameters used for JaDa are:

restarting.scheme=’thick restart’

restart.target=’smallest’

robustShifts=’on’
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Fig. 2. Time for a matrix-vector product for some quantum dots of Cadmium Selenium
of different size. The time for a matrix-vector product is growing as n log(n) where n

is the size of the linear system as expected.

In terms of robustness, it is important to note that all of these methods are
extremely robust. They all converge to the correct solutions. For our applications
this also means that they find degenerate states without any particular problem.

All methods are looking for the numEvals = 10 eigenstates of highest energy
in the valence band maximum (VBM). The shift for the folded spectrum is in
−4.8eV and we use the diagonal preconditioner described in Section 2.2.

All the runs are performed on one node of IBM SP3 (seaborg.nersc.gov)
which represents 16 processors in shared memory.

We use two stopping criteria. For the banded PCG and LOBPCG, the stop-
ping criterion is based on H . This means that iterations are stopped when
for all i = 1, . . . ,mx ‖Hψi − ψiEi‖ ≤ tol. For JaDa (JD-LOBPCG, JD-
LOBPCG+L, JD-QMR, GD+1), the stopping criterion used is based on the
folded matrix (H−ErefI)

2. This means that iterations are stopped when for all
i = 1, . . . ,mx ‖(H −Eref )2ψi −ψiλi‖ ≤ tol. These two stopping criteria differ
slightly in practice and our experiments show that stopping the iteration with
(H − ErefI)

2 implied that the error with H is always smaller than 5 · tol.
Various sets of parameters have been tested for GD+1 and JDQMR in all

the cases, but we can see that there are very few influences on the final time.
Figure 3 gives a summary of our results. As the size of the quantum dots

grows we see that the problems become harder and need more matrix-vector
products. This result was expected. The Figure also clearly shows two trends
represented correspondingly by the class of CG-based methods and the class of
Jacobi-based methods. The Jacobi-Davidson based methods clearly outperform
the CG-based methods either in terms of number of matrix-vector products or
in time to solution.



The slope in terms of matrix-vector products (see Figure 3, Left) for the
Jacobi-Davidson is almost flat, which shows that the methods scale numerically
very well as the size of the quantum dots increases. A general remark is that if one
is concerned only with the number of matrix-vector products until convergence
then the best methods in our study is always GD+1.

The slope for the Jacobi-Davidson methods in terms of time is not flat,
but one has to remember that those experiments are performed on a fixed size
machine. Since the time for a matrix-vector product increases linearly with the
size of the problem (see Figure 2), we recover this linear increase in the slope of
our methods.

It is noteworthy that the matrix-vector product operation is performed with-
out blocking, the reason being that the blocked version we have is not more
efficient on these size problems than the nonblocked version. Such behavior is a
major drawback for methods like LOBPCG that take full advantage of the block
matrix-vector product.
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Fig. 3. Number of matrix-vector products (Left) and time in seconds (Right) for
finding the 10 highest energies (and states) in the VBM for some quantum dots of
Cadmium Selenium of various sizes. The folded spectrum method is used for all the
methods with shift on Eref = −4.8eV. Figure 1 has a description of the quantum dots.

An interesting quantity to look at is the ratio of time that these methods are
spending in the matrix-vector products. The remaining part of the time is mostly
due to orthogonalization procedure. Therefore we can have a rough estimate
on the ratio orthogonalization/matrix-vector product those methods are using.
These ratios differ a lot from one method to the others (see Figure 4 for the
results on the Cd83Se81 quantum dots). In the case of Figure 4, although the
method with the lesser matrix-vector products is GD+1, it is not the fastest one.
For this type of problem, matrix-vector products are relatively fast compared to
orthogonalization schemes and thus a method with more matrix-vector products
but far less orthogonalization (JDQMR) is faster than the optimal method in
terms of matrix-vector products (GD+1).



Method Time(s) # matvecs Time in % in
matvec(s) matvec

Banded CG 236.13 15096 201.46 85.3%

LOBPCG 190.37 10688 146.11 76.8%

JDQMR 75.65 5314 73.20 96.7%

GD+1 100.87 4084 57.17 56.6%

Fig. 4. Time spent in the matrix-vector multiply operations for Cd83Se81.

4 Conclusions and possible extensions

This paper presents a comparison of eigensolvers in the context of the compu-
tation of electronic and optical properties of quantum dots using the ESCAN
method with empirical pseudopotentials.

An evaluation of several state-of-the-art preconditioned iterative eigensolvers
on a range of CdSe quantum dots of various sizes leads us to the conclusion that
the Jacobi-Davidson type solvers were superior in terms of time and in terms of
matrix-vector products for this range of problems. GD+1 is always the method
that leads to the less matrix-vector products when the basis size is fixed. The
new solvers are almost three times faster than the original method.

The current Jacobi Davidson method can be improved in several ways. In
particular, we would like

1. to avoid the need to fold the spectrum when seeking for the interior eigen-
values,

2. to have a better control of the eigenvalues we get from the methods (the one
on the left or the one on the right of Eref ),

3. to have a better stopping criterion in the inner QMR loop,

4. to be able to pass the shift to the diagonal preconditioner for a better pre-
conditioning in the inner iterations,

5. and finally to stop the iterations of the Jacobi Davidson method with the
original matrix instead with the folded one.

All these new features should lead us to a better Jacobi Davidson solver.
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