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Abstract

We present a new technique to accelerate the convergence of the folded spectrum method in empirical pseudopotential
band edge state calculations for colloidal quantum dots. We use bulk band states of the materials constituent of the quan-
tum dot to construct initial vectors and a preconditioner. We apply these to accelerate the convergence of the folded spec-
trum method for the interior states at the top of the valence and the bottom of the conduction band. For large CdSe
quantum dots, the number of iteration steps until convergence decreases by about a factor of 4 compared to previous
calculations.
Published by Elsevier Inc.
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1. Introduction

A challenging task in computational nano-science is to predict electronic properties and their changes due
to quantum confinement effects in experimentally synthesized nano-systems such as quantum dots.

One approach to large scale quantum dot calculations is to first construct the single particle Hamiltonian of
the system either by the empirical pseudopotential or the charge patching method. Only a few of the interior
eigenvalues on either side of the band gap are computed as they determine many of the optical and electronic
properties of the system. These band edge states are solutions of an effective single particle Schrödinger
equation
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HWi � � 1

2
r2 þ V

� �
Wi ¼ �iWi; ð1Þ

see [12,13,16,20]. In (1), H represents the Hamiltonian, wi(r) denotes the single particle wave function with en-
ergy �i and V the potential. In contrast, in the self-consistent field (SCF) iteration [17,18], a large number of
eigenstates of (1) need to be computed [21].

We apply the parallel energy SCAN (ESCAN) method [4,25] where a semi-empirical potential or a charge
patching method [24] is used to construct V. In a plane wave basis, the Hamiltonian H is only implicitly avail-
able: the kinetic energy part is represented in Fourier space where it is diagonal, and the potential energy part
is evaluated in real space (via the fast Fourier transformation, FFT) so that the number of calculations used to
construct the matrix-vector product scales as n logn rather than n2 where n is the dimension of H. To compute
interior eigenstates close to a reference energy Eref, we use the preconditioned conjugate gradient (PCG)
[14,16] method with a spectral transformation, the folded spectrum approach [26]: the interior eigenvalue prob-
lem is transformed to find the smallest eigenvalues of

ðH � Eref IÞ2Wi ¼ �iWi: ð2Þ

However, there can be convergence problems for large quantum dot systems with strongly clustered, nearly
degenerate eigenstates. Squaring the Hamiltonian in (2) contributes to the stronger clustering of the eigen-
values and a decreased convergence rate of PCG.

This current work addresses these difficulties. The foundation of our approach lies in the observation that
the converged quantum dot states around the band gap are confined to the interior of the quantum dot and are
‘bulk-like’. We show how to make use of these cheaply computable bulk eigenstates [27] to improve the choice
of the starting vector and the preconditioner for the quantum dot PCG eigensolver in ESCAN. We validate
our approach on both CdSe bulk systems and colloidal quantum dots. From a physical point of view, CdSe
quantum dots are one of the most thoroughly studied nanostructures because photoluminescence occurs at
different frequencies, depending on the size of the dot. This property has many important practical applica-
tions such as optical tags in biological systems.

The rest of the paper is organized as follows. In Section 2 we explain the relationship between colloidal
quantum dot and bulk band (BB) structure. The preconditioned conjugate gradient (PCG) method is
explained in Section 3. Next, in Section 4, we show how to use bulk band information in the derivation of
BB-type preconditioners for PCG. Section 5 contains our computational results. Finally, in Section 6, we state
our conclusions and possible further extensions of this work.

2. Quantum dot and bulk band structure

The properties of ideal bulk systems such as crystals are well understood: their Bloch states can be com-
puted relatively cheaply using direct G-space diagonalization when only a few atoms are in a unit cell. Col-
loidal quantum dots are more complicated physical objects where bulk materials and vacuum constitute the
interior and exterior, respectively. Moreover, they usually are much larger, possibly consisting of thousands
of atoms.

However, our key observation relating these two systems is that for large enough systems, the converged quan-
tum dot states around the band gap have a small angle to the subspace defined by the corresponding bulk system
states. This section describes the mathematical tools for relating the bulk and the quantum dot eigen-systems.

2.1. Quantum dot and BB space embedding

We first consider a bulk system on a primary cell with periodicities a1, a2, a3. The periodicity of the bulk in
terms of this crystal unit corresponds to a periodic potential satisfying V(r + a) = V(r). Bloch’s theorem [1]
states that the eigenstates Wnk of the bulk Hamiltonian H are of the form

WnkðrÞ ¼ unkðrÞeikr; unkðrþ aÞ ¼ unkðrÞ: ð3Þ
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The corresponding eigen-energies are denoted by Enk. From the expansion

unkðrÞ ¼
X

G

ck
nGeiGr; ð4Þ

the a-periodicity of unk requires that

eiGðrþaÞ ¼ eiGr () G ¼ 2p
a1

j1b1 þ
2p
a2

j2b2 þ
2p
a3

j3b3; jf1;2;3g ¼ . . . ;�1; 0; 1; . . . ð5Þ

with (b1,b2,b3) = (a1,a2,a3)�1.
To limit the computational effort, we only consider the truncated expansion

WnkðrÞ ¼
X

G;jGþkj<qcut

ck
nGeiðGþkÞr; ð6Þ

with the k from the so-called first Brillouin zone (FBZ), see [1], and where qcut refers to an energy cutoff.
Now consider the quantum dot in a supercell of extension na. The analogous periodicity argument requires

the supercell solution to be of the form

WðrÞ ¼
X

q

cqeiqr; ð7Þ

where

eiqðrþnaÞ ¼ eiqr () q ¼ 2p
n1a1

j1b1 þ
2p

n2a2

j2b2 þ
2p

n3a3

j3b3; jf1;2;3g ¼ . . . ;�1; 0; 1; . . . ð8Þ

defining the reciprocal space

S ¼ span eiqrjq satisfies ð8Þ
� �

ð9Þ

for the quantum dot.
In order to efficiently use bulk states for quantum dot computations, we choose only those k in (6) that

satisfy

Gþ k ¼ q: ð10Þ

As a result,

k ¼ 2p
k1

n1a1

b1 þ
k2

n2a2

b2 þ
k3

n3a3

b3

� �
; jf1;2;3g ¼ . . . ;�1; 0; 1; . . . ; ð11Þ

and k is in the FBZ.
We then define the bulk band (BB) space

SBB ¼ span WnkjWnk from; ð6Þ k satisfies ð11Þf g: ð12Þ

With this definition, SBB is a subspace of S (and usually of much smaller dimension).
The relationship between the different lattices is depicted in Fig. 1.

2.2. Low rank spectral approximation of the bulk Hamiltonian

One major goal of the current paper is to use the bulk Hamiltonian HBB as a model for the quantum dot
Hamiltonian and thus its inverse, for which a good approximation is relatively easy to compute, as a precon-
ditioner for the quantum dot computation. This is plausible because the quantum dot wave functions near the
band gap are localized inside the quantum dot where the quantum dot Hamiltonian is exactly HBB.
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For purposes of preconditioning, we can represent the relevant part of the bulk Hamiltonian HBB using its
spectral decomposition into eigen energies Enk and eigenstates Wnk as given in (6).

If we just want to find the smallest eigenvalue of the original Hamiltonian from (1), we would use

H�1
BB �

X
n;k

WnkE�1
nk WH

nk: ð13Þ

In preconditioning the folded spectrum Eq. (2), we use the analogous

ðHBB � Eref IÞ�2 �
X
n;k

WnkðEnk � ErefÞ�2WH
nk: ð14Þ

We make use of a low rank version, considering only a subset of states and selecting an energy cutoff, i.e.
n:nmin 6 n 6 nmax, k:jkj < kcut.

3. The PCG algorithm

ESCAN uses the preconditioned conjugate gradient (PCG) method [25] with folded spectrum to compute
interior eigenstates. The smallest eigenvalue k of the Hermitian matrix A ” (H � ErefI)2 (the one that corre-
sponds to the eigenvalue of H closest to the reference point Eref) minimizes the Rayleigh quotient

k ¼ arg min
x6¼0

qðxÞ � qðxjÞ ¼ ðxH
j AxjÞ=ðxH

j xjÞ: ð15Þ

From a current iterate xj and a descent direction dj = �$q(xj) + bjdj�1 [the (scaled) gradient being given by
$q(xj) = A xj � xjq(xj)] the method finds the angle

hjþ1 ¼ arg min
h

qðxj cos hþ dj sin hÞ; ð16Þ

that is xj+1 minimizes the energy functional q in the two-dimensional subspace span{xj,dj}. A preconditioner P

can be used to influence the choice of the descent direction via

dj ¼ �PrqðxjÞ þ bjdj�1; ð17Þ

see also [10,23]. After a number of band-by-band iterations, the Rayleigh–Ritz procedure is invoked to com-
pute the best approximations from the subspace that the bands span, see also [15]. The procedure is summa-
rized in Algorithm 1, for a more detailed discussion see the references in [14] and also [7,8,16].

FBZ k_cut

k_1

q_cutG+k_1 G

Fig. 1. Reciprocal space relationship: the sparse G + k-grid compatibly embedded into the q-grid.
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4. Accelerating the nonlinear PCG algorithm

In this section, we discuss two complementary strategies to improve the folded spectrum PCG eigensolver
in ESCAN for band gap calculations:

(1) Replace the random start vector by a (modified) bulk state at the gamma point, see Section 4.1.
(2) Replace the previously used preconditioner by one that better approximates the inverse of the bulk

Hamiltonian, see Section 4.2.

Both approaches are motivated by the previously stated observation of a small angle between the quantum
dot and the bulk system states close to the band gap.

4.1. Bulk-based starting vectors

While the Rayleigh–Ritz procedure on the complete bulk space SBB is too expensive, it is still possible to
find an inexpensive good initial vector for the PCG iteration. Experimentally, we found that the corresponding
bulk wave function at the gamma point (the center of the first Brillouin zone [1]). constitutes an excellent start-
ing vector for the PCG iteration.

From physics, it is known that the true solution we are looking for typically is confined to the interior of the
quantum dot, see Fig. 2. We use the gamma point bulk state Wn0 and restrict it to the interior of the quantum
dot in real space using a step mask function and setting it to zero outside the quantum dot.

Algorithm 1. The preconditioned conjugate gradient (PCG) algorithm for finding the nstate smallest
eigenvalues of the operator A = (H � ErefI)2.

Choose random start vectors X(1:nstate)
for i=1,niter do

for m=1,nstate do

Orthonormalize X(m) to X(1:m-1)
y1 = A X(m) for j=1,nline do

K(m) = q(X(m)) = X(m)Hyj

if state X(m) not yet converged then

rj+1 = (I � X(m)X(m)H)yj

b ¼ rH
jþ1

Prjþ1

rH
j Prj

djþ1 ¼ ðI � X ðmÞX ðmÞH Þð�Prjþ1 þ bdjÞ; c ¼ kdjþ1k�1
2

ej+1 = A dj+1

hjþ1 ¼ 0:5 arctanð 2cdH
jþ1

yj

KðmÞ�c2dH
jþ1

ejþ1
Þ

����
����

X(m) = cos(hj+1)X(m) + sin(hj+1)cdj+1

yj+1 = cos(hj+1)yj + sin(hj+1)cej+1

end if
end for

end for

[X(1:nstate),K(1:nstate)] = Rayleigh–Ritz on span {X(1:nstate)}
end for

4.2. The previously used preconditioner

In ESCAN, the preconditioners are designed to approximate (H � Eref I)�2 in the case of solving the folded
spectrum. The preconditioner that was used up to now in ESCAN is diagonal. It is applied in the Fourier
space as
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P�1 ¼ D � I þ � 1

2
r2 þ V avg � Eref

� �
=Ek

� �2

ð18Þ

where � 1
2
r2 is the Laplacian (diagonal in the Fourier space), Eref is the shift used in the folded spectrum, Vavg

is the average potential and Ek is the average kinetic energy of a given initial approximation of a wave function
winit, see [26].

4.3. New BB-type preconditioners

We describe how to improve the old preconditioner from (18). In order to use the approximation (14) from
the bulk as preconditioner for the quantum dot, we use the L2 projection QH of functions R(r) 2 S to SBB (q-
grid to G-grid), and Q to prolongate back from SBB to S.

Using (12), we find

QQH �
X

n:nmin6n6nmax ;k:jkj<kcut

WnkW
H
nk ð19Þ

when only the states nmin 6 n 6 nmax of SBB are considered.
The residual R is decomposed into its SBB and S?BB components, i.e. Q QHR and R � Q QHR. The SBB-com-

ponent is preconditioned with (HBB � ErefI)�2, approximated by (14). The S?BB component is preconditioned
with the diagonal preconditioner D�1 from (18). In summary, the preconditioned residual is given by

PR � QðHBB � Eref IÞ�2QH Rþ D�1ðR� QQH RÞ: ð20Þ

4.4. Efficient implementation of the new preconditioner

As described in Section 2.1, the bulk wave functions are sparse vectors in the reciprocal space; the degree of
sparsity depends on the supercell size.

The efficient application of the preconditioner in (20) relies on the implementation of (19), which involves

� the dot products ank � WH
nkR between distributed vectors, R being dense and Wnk being sparse, and

� the sum
P

ankWnk of scalar multiples of distributed sparse vectors.

For each sparse wave function, we use an integer array Q_LOCAL to store the indices of the local Fou-
rier coefficients in compressed form. These are computed once at the beginning of the program and subse-
quently used as indirect addresses; they are the same for the Wnk of all states n but depend on the k-point k.
The following Algorithm 2 is designed to reuse them as much as possible and to reduce the amount of glo-
bal communication. For this reason, all dot products are performed locally first using a workspace array
DOTP and then a single blocked ALL_REDUCE operation is performed to find all global dot products
simultaneously.

 0 20 40 60 80 100 120 140 0  20  40  60  80  100  120  140

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

Fig. 2. Cross section of the charge density for the state at the top of the valence band (VBM). The wave-function is confined to the interior
of the spherical CdSe quantum dot (which is centered in the middle of the box).
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Algorithm 2. Implementation of the preconditioning operation P = Q QHR.

Compute local dot products with distributed Wnk for all bulk states.

Set array DOTP=0
for k=1,nk (nk=number of bulk k-points) do

for g=1,ng(k) (ng(k)=local number of g points for this k-point) do

q=Q_LOCAL(g)
for n=1,nbulk (nbulk=number of bulk states) do

DOTP(n,k) = DOTP(n,k) + (Wnk(g))*R(q)
end for

end for

end for
Perform one blocked ALLREDUCE to sum up all local dot products.

DOTP=GLOBAL_SUM(DOTP)
Compute projection P, a scaled sum of sparse vectors.

P=0
for k=1,nk do

for g=1,ng(k) do

q=Q_LOCAL(g)
for n=1,nbulk do

P(q) = P(q) + Wnk(g)DOTP(n,k)
end for

end for

end for

5. Numerical results

We present two different experimental evaluations of our proposed modifications in ESCAN. We first val-
idate the preconditioner on bulk systems, see Section 5.1. We then show, in Section 5.2, the impact of an
improved initial vector and new preconditioner on large CdSe quantum dots. The experiments were performed
on the IBM SP seaborg.nersc.gov consisting of Power 3 processors with a peak performance of 1.5 GFlops.
The processors are distributed among 380 compute nodes with 16 processors per node.

5.1. Validation of the preconditioner on a bulk system

For the bulk problems, we start with a randomly generated initial guess and show the convergence history
on two CdSe bulk systems consisting of 64 and 512 atoms, respectively.

The convergence histories for the two test systems are given on Fig. 3. We solve for the 4 lowest eigen-states
and the convergence shown is for one of the three degenerate VBM states. The required accuracy is residual in
L2 norm to be less than 10�10. We get convergence using the new preconditioner in 3 and 4 iterations for cor-
respondingly the first and second test systems. For test system 2 the new method reduces the number of iter-
ations by a factor of 4.

5.2. CdSe quantum dot problems

We consider two large CdSe quantum dots that are described in Table 1 and compute the three degenerate
states at the top of the valence band using PCG with folded spectrum.

The results are summarized on Fig. 4. We compare three methods, the old preconditioner with random
start vector, and old and new preconditioner with improved start vector. The combined improvements not
only result in a significant reduction in the number of iterations, they also enable faster convergence to a small
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residual norm. The speedup over the old preconditioner with improved initial vector is at least a factor of two.
The speedup is much larger compared to the old preconditioner with random start vector where the conver-
gence tends to stagnate at a certain level.

Note that while the convergence results are displayed as a function of the number of iterations, the picture
is the same for the computing time. Using the implementation described in Section 4.4, the overhead for using
the new preconditioner is less than 5% compared to using the old one and does not impact the scalability of the
underlying code [4].

Table 1
Quantum dot considered in the comparisons in Fig. 4 and the dimensions of the BB subspace SBB

Quantum dot size (atoms) Grid size (real space) System size (plane wave) BB states (n,k) Angle VBM to SBB

784 Cd, 739 Se 1283 145K (5949) 2.3�
1568 Cd, 1601 Se 1603 282K (5949) 1.9�

The last column shows the angle between the converged VBM wave function and its projection on the space SBB.
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Fig. 3. Convergence histories for bulk test systems (left: 64 atoms, right: 512 atoms) as described in Subsection 5.1. Shown are the
convergence without preconditioner, with diagonal preconditioner, and with BB preconditioner.
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Fig. 4. Comparison of diagonal preconditioner (with random and improved initial vector) and BB preconditioner with improved initial
vector. Shown is the convergence for one of the three degenerate VBM states with the folded spectrum approach for the two quantum dots
from Table 1. The left and right picture show the convergence for the Cd784Se739 and Cd1568 Se1601 quantum dots, respectively.
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6. Conclusions and possible extensions

In this paper, we presented a bulk-based acceleration for computing interior states close to the band gap of
colloidal quantum dots. By the example of large CdSe quantum dots, we showed a significantly faster and
more accurate computation of the band edge states. An extension to other systems such as GaAs quantum
dots is possible.
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