
Mixed Precision Iterative Refinement Techniques
for the Solution of Dense Linear Systems

Alfredo Buttari1, Jack Dongarra1,3,4, Julie Langou1, Julien Langou2,
Piotr Luszczek1, and Jakub Kurzak1

1Department of Electrical Engineering and Computer Science, University Tennessee, Knoxville,
Tennessee

2Department of Mathematical Sciences, University of Colorado at Denver and Health Sciences
Center, Denver, Colorado

3Oak Ridge National Laboratory, Oak Ridge, Tennessee
4University of Manchester

September 9, 2007

Abstract

By using a combination of 32-bit and 64-bit floating point arithmetic, the per-
formance of many dense and sparse linear algebra algorithms can be significantly
enhanced while maintaining the 64-bit accuracy of the resulting solution. The ap-
proach presented here can apply not only to conventional processors but also to
exotic technologies such as Field Programmable Gate Arrays (FPGA), Graphical
Processing Units (GPU), and the Cell BE processor. Results on modern processor
architectures and the Cell BE are presented.

Introduction
In numerical computing, there is a fundamental performance advantage in using the
single precision, floating point data format over the double precision one. Due to more
compact representation, twice the number of single precision data elements can be
stored at each level of the memory hierarchy including the register file, the set of
caches, and the main memory. By the same token, handling single precision values
consumes less bandwidth between different memory levels and decreases the number
of cache and TLB misses. However, the data movement aspect affects mostly memory-
intensive, bandwidth-bound applications, and historically has not drawn much attention
to mixed precision algorithms.

In the past, the situation looked differently for computationally intensive work-
loads, where the load was on the floating point processing units rather than the mem-
ory subsystem, and so the single precision data motion advantages were for the most
part irrelevant. With the focus on double precision in the scientific computing, double

precision execution units were fully pipelined and capable of completing at least one
operation per clock cycle. In fact, in many high performance processor designs single
precision units were eliminated in favor of emulating single precision operations using
double precision circuitry. At the same time, a high degree of instruction level paral-
lelism was being achieved by introducing more functional units and relatively complex
speculation mechanisms, which did not necessarily guarantee full utilization of the
hardware resources.

That situation began to change with the widespread adoption of short vector, Single
Instruction Multiple Data (SIMD) processor extensions, which started appearing in the
mid 90’s. An example of such extensions are the Intel MultiMedia eXtensions (MMX)
that were mostly meant to improve processor performance in Digital Signal Processing
(DSP) applications, graphics and computer games. Short vector, SIMD instructions
are a relatively cheap way of exploiting data level parallelism by applying the same
operation to a vector of elements at once. It eliminates the hardware design complexity
associated with the bookkeeping involved in speculative execution. It also gives better
guarantees for practically achievable performance than does runtime speculation, pro-
vided that enough data parallelism exists in the computation. Most importantly, short
vector, SIMD processing provides the opportunity to benefit from replacing the double
precision arithmetic with the single precision one. Since the goal is to process the en-
tire vector in a single operation, the computational throughput doubles while the data
storage space halves.

Most processor architectures available today have been augmented, at some point,
in their design evolution with short vector, SIMD extensions. Examples include Stream-
ing SIMD Extensions (SSE) for the AMD and the Intel line of processors; PowerPC’s
Velocity Engine, AltiVec, and VMX; SPARC’s Visual Instruction Set (VIS); Alpha’s
Motion Video Instructions (MVI); PA-RISC’s Multimedia Acceleration eXtensions
(MAX); MIPS-3D Application Specific Extensions (ASP) and Digital Media Exten-
sions (MDMX) and ARM’s NEON feature. The different architectures exhibit large
differences in their capabilities. The vector size is either 64 bits or, more commonly,
128 bits. The register file size ranges from just a few to as many as 256 registers. Some
extensions only support integer types while others operate on single precision, floating
point numbers, and yet others process double precision values.

Today, the Synergistic Processing Element (SPE) of the CELL processor can prob-
ably be considered the state of the art in short vector, SIMD processing. Possessing
128-byte long registers and a fully pipelined fused, multiply-add instruction, it is ca-
pable of completing as many as eight single precision, floating point operations each
clock cycle. When combined with the size of the register file of 128 registers, it is
capable of delivering close to peak performance on many common computationally
intensive workloads.

Table 1 shows the difference in peak performance between single precision (SP)
and double precision (DP) of four modern processor architectures; also, on the last
column is reported the ratio between the time needed to solve a dense linear system
in double and single precision by means of the LAPACK DGESV and SGESV respec-
tively. Following the recent trend in chip design, all of the presented processors are
multi-core architectures. However, to avoid introducing the complexity of thread-level
parallelization to the discussion, we will mainly look at the performance of individual

Table 1: Floating point performance characteristics of individual cores of modern,
multi-core processor architectures. DGESV and SGESV are the LAPACK subroutines
for dense system solution in double precision and single precision respectively.

Architecture Clock DP Peak SP Peak time(DGESV)/
[GHz] [Gflop/s] [Gflop/s] time(SGESV)

AMD Opteron 246 2.0 4 8 1.96
IBM PowerPC 970 2.5 10 20 1.87
Intel Xeon 5100 3.0 12 24 1.84
STI Cell BE 3.2 1.81 25.6 11.37

cores throughout the chapter. The goal here is to focus on instruction-level parallelism
exploited by short vector SIMD’zation.

Although short vector, SIMD processors have been around for over a decade, the
concept of using those extensions to utilize the advantages of single precision perfor-
mance in scientific computing did not come to fruition until recently, due to the fact
that most scientific computing problems require double precision accuracy. It turns out,
however, that for many problems in numerical computing, it is possible to exploit the
speed of single precision operations and resort to double precision calculations at few
stages of the algorithm to achieve full double precision accuracy of the result. The tech-
niques described here are fairly general and can be applied to a wide range of problems
in linear algebra, such as solving linear systems of equations, least square problems,
singular value and eigenvalue problems. Here we are going to focus on solving dense
linear systems of equations, both non-symmetric and symmetric positive definite, using
direct methods. An analogous approach for the solution of sparse systems, both with
direct and Krylov iterative methods, is presented in [1].

1 Direct Methods for Solving Dense Systems

1.1 Algorithm
Iterative refinement is a well known method for improving the solution of a linear
system of equations of the form Ax = b [2]. The standard approach to the solution of
dense linear systems is to use the LU factorization by means of Gaussian elimination.
First, the coefficient matrixA is factorized into the product of a lower triangular matrix
L and an upper triangular matrix U using LU decomposition. Commonly, partial row
pivoting is used to improve numerical stability resulting in the factorization PA = LU ,
where P is the row permutation matrix. The solution for the system is obtained by first
solving Ly = Pb (forward substitution) and then solving Ux = y (back substitution).
Due to the round-off error, the computed solution x carries a numerical error magnified
by the condition number of the coefficient matrix A. In order to improve the computed
solution, an iterative refinement process is applied, which produces a correction to the
computed solution at each iteration, which then yields the basic iterative refinement

1The DP unit is not fully pipelined, and has a 7 cycle latency.

algorithm (Algorithm 1). As Demmel points out [3], the non-linearity of the round-off
error makes the iterative refinement process equivalent to the Newton’s method applied
to the function f(x) = b−Ax. Provided that the system is not too ill-conditioned, the
algorithm produces a solution correct to the working precision. Iterative refinement is
a fairly well understood concept and was analyzed by Wilkinson [4], Moler [5] and
Stewart [2].

Algorithm 1 The iterative refinement method for the solution of linear systems
1: x0 ← A−1b
2: k = 1
3: repeat
4: rk ← b−Axk−1

5: zk ← A−1rk
6: xk ← xk−1 + zk
7: k ← k + 1
8: until convergence

The algorithm can be modified to use a mixed precision approach. The factoriza-
tion PA = LU and the solution of the triangular systems Ly = Pb and Ux = y are
computed using single precision arithmetic. The residual calculation and the update
of the solution are computed using double precision arithmetic and the original dou-
ble precision coefficients. The most computationally expensive operations, including
the factorization of the coefficient matrix A and the forward and backward substitu-
tion, are performed using single precision arithmetic and take advantage of its higher
speed. The only operations that must be executed in double precision are the residual
calculation and the update of the solution. It can be observed, that all operations of
O(n3) computational complexity are handled in single precision, and all operations
performed in double precision are of at most O(n2) complexity. The coefficient ma-
trix A is converted to single precision for the LU factorization and the resulting factors
are also stored in single precision. At the same time, the original matrix in double
precision must be preserved for the residual calculation. The mixed precision, iterative
refinement algorithm is outlined in Algorithm 2; the (32) subscript means that the data
is stored in 32-bit format (i.e., single precision) and the absence of any subscript means
that the data is stored in 64-bit format (i.e., double precision). Implementation of the
algorithm is provided in the LAPACK package by the routine DSGESV.

Higham [6] gives error bounds for the single and double precision, iterative re-
finement algorithm when the entire algorithm is implemented with the same precision
(single or double, respectively). He also gives error bounds in single precision arith-
metic, with refinement performed in double precision arithmetic [6]. The error analysis
in double precision, for our mixed precision algorithm (Algorithm 2), is given in Ap-
pendix A.

The same technique can be applied to the case of symmetric, positive definite prob-
lems. Here, Cholesky factorization (LAPACK’s SPOTRF routine) can be used in place
of LU factorization (SGETRF), and a symmetric back solve routine (SPOTRS) can be
used in place of the routine for the general (non-symmetric) case (SGETRS). Also,

Algorithm 2 Solution of a linear system of equations using mixed precision, iterative
refinement. (SGETRF and SGETRS are names of LAPACK routines).
A(32), b(32) ← A, b
L(32), U(32), P(32) ← SGETRF(A(32))
x

(1)
(32) ← SGETRS(L(32), U(32), P(32), b(32))

x(1) ← x
(1)
(32)

i← 0
repeat
i← i+ 1
r(i) ← b−Ax(i)

r
(i)
(32) ← r(i)

z
(i)
(32) ← SGETRS(L(32), U(32), P(32), r

(i)
(32))

z(i) ← z
(i)
(32)

x(i+1) ← x(i) + z(i)

until x(i) is accurate enough

the matrix-vector product Ax can be implemented by the BLAS’ DSYMV routine, or
DSYMM for multiple right hand sides, instead of the DGEMV and DGEMM routines
for the non-symmetric case. The mixed precision algorithm for the symmetric, positive
definite case is presented by Algorithm 2. Implementation of the algorithm is provided
in the LAPACK package by the routine DSPOSV.

Algorithm 3 Solution of a symmetric positive definite system of linear equations using
mixed precision, iterative refinement. (SPOTRF and SPOTRS are names of LAPACK
routines).
A(32), b(32) ← A, b
L(32), L

T
(32) ←SPOTRF(A(32))

x
(1)
(32) ←SPOTRS(L(32), L

T
(32), b(32))

x(1) ← x
(1)
(32)

i← 0
repeat
i← i+ 1
r(i) ← b−Ax(i)

r
(i)
(32) ← r(i)

z
(i)
(32) ←SPOTRS(L(32), L

T
(32), r

(i)
(32))

z(i) ← z
(i)
(32)

x(i+1) ← x(i) + z(i)

until x(i) is accurate enough

1.2 Experimental Results and Discussion
To collect performance results for the Xeon, Opteron and PowePC architectures, the
LAPACK iterative refinement routines DSGESV and DSPOSV were used, for the non-
symmetric and symmetric cases, respectively. The routines implement classic, blocked
versions of the matrix factorizations and rely on the layer of Basic Linear Algebra Sub-
routines (BLAS) for architecture specific optimizations to deliver performance close
to the peak. As mentioned before, in order to simplify the discussion and leave out
the aspect of parallelization, we have decided to look at the performance of individual
cores on the multi-core architectures.

Figures 1-8 show the performance of the single-core serial implementations of Al-
gorithm 2 and Algorithm 3 on the architectures in Table 2.

Table 2: Hardware and software details of the systems used for performance experi-
ments.

Architecture Clock Memory BLAS Compiler
[GHz] [MB]

AMD Opteron 246 2.0 2048 Goto-1.13 Intel-9.1
IBM PowerPC 970 2.5 2048 Goto-1.13 IBM-8.1
Intel Xeon 5100 3.0 4096 Goto-1.13 Intel-9.1
STI Cell BE 3.2 512 – Cell SDK-1.1

These figures show that the mixed precision, iterative refinement method can run
very close to the speed of the full single precision solver while delivering the same
accuracy as the full double precision one. On the AMD Opteron, Intel Woodcrest and
IBM PowerPC architectures (see Figures 1- 6), the mixed precision, iterative solver can
provide a speedup of up to 1.8 for the unsymmetric solver and 1.5 for the symmetric
one, if the problem size is big enough. For small problem sizes, in fact, the cost of even
a few iterative refinement iterations is high compared to the cost of the factorization and
thus, the mixed precision, iterative solver is less efficient than the full double precision
one.

For the Cell processor (see Figures 7 and 8), parallel implementations of Algo-
rithms 2 and 3 have been produced in order to exploit the full computational power
of the processor. Due to the large difference between the single precision and double
precision floating point units (see Table 1), the mixed precision solver performs up to
7× and 11× faster than the double precision peak in the unsymmetric and symmetric,
positive definite cases respectively. Implementation details for this case can be found
in [7, 8].

2 Conclusions
The algorithms presented focus solely on two precisions: single and double. We see
them however in a broader context of higher and lower precision where, for example,
a GPU performs computationally intensive operations in its native 16-bit arithmetic,
and consequently the solution is refined using 128-bit arithmetic emulated in software

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

14

16

problem size

G
flo

p/
s

LU Solve −− Intel Woodcrest 3.0 GHz

Full−single
Mixed−prec
Full−double

Figure 1: Performance of mixed precision, iterative refinement for unsymmetric prob-
lems on Intel Woodcrest.

0 1000 2000 3000 4000 5000
0

5

10

15

problem size

G
flo

p/
s

Cholesky Solve −− Intel Woodcrest 3.0 GHz

Full−single
Mixed−prec
Full−double

Figure 2: Performance of mixed precision, iterative refinement for symmetric, positive
definite problems on Intel Woodcrest.

(if necessary). As mentioned before, the limiting factor is conditioning of the system
matrix. In fact, an estimate (up to the order of magnitude) of the condition number

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

problem size

G
flo

p/
s

LU Solve −− AMD Opteron246 2.0 GHz

Full−single
Mixed−prec
Full−double

Figure 3: Performance of mixed precision, iterative refinement for unsymmetric prob-
lems on AMD Opteron246.

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

problem size

G
flo

p/
s

Cholesky Solve −− AMD Opteron246 2.0 GHz

Full−single
Mixed−prec
Full−double

Figure 4: Performance of mixed precision, iterative refinement for symmetric, positive
definite problems on AMD Opteron246.

(often available from previous runs or the physical problem properties) may become
an input parameter to an adaptive algorithm that attempts to utilize the fastest hardware

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

7

8

problem size

G
flo

p/
s

LU Solve −− IBM PowerPC 970 2.5 GHz

Full−single
Mixed−prec
Full−double

Figure 5: Performance of mixed precision, iterative refinement for unsymmetric prob-
lems on IBM PowerPC 970.

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

problem size

G
flo

p/
s

Cholesky Solve −− IBM PowerPC 970 2.5 GHz

Full−single
Mixed−prec
Full−double

Figure 6: Performance of mixed precision, iterative refinement for symmetric, positive
definite problems on IBM PowerPC 970.

available, if its limited precision can guarantee convergence. Also, the methods for
sparse eigenvalue problems that result in Lanczos and Arnoldi algorithms are amenable

500 1000 1500 2000 2500 3000 3500
0

50

100

150

problem size

G
flo

p/
s

LU Solve −− Cell Broadband Engine 3.2 GHz

Full−single
Mixed−precision
Peak−double

Figure 7: Performance of mixed precision, iterative refinement for unsymmetric prob-
lems on CELL Broadband Engine.

1000 2000 3000 4000
0

50

100

150

200

problem size

G
flo

p/
s

Cholesky Solve −− Cell Broadband Engine 3.2 GHz

Full−single

Mixed−precision

Peak−double

Figure 8: Performance of mixed precision, iterative refinement for symmetric, positive
definite problems on CELL Broadband Engine.

to our techniques, and we would like to study their theoretical and practical challenges.
It should be noted that this process can be applied whenever a Newton or ”Newton-

like” method is used. That is whenever we are computing a correction to the solution
as in xi+1 = xi− f(xi)/f ′(xi) or (xi+1−xi) = −f(xi)/f ′(xi) this approach can be
used. We see solving optimization problems as a natural fit.

References
[1] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Piotr Luszczek, and Stanimire To-

mov. Using mixed precision for sparse matrix computations to enhance the per-
formance while achieving 64-bit accuracy. ACM Transactions on Mathematical
Software, 1, to appear December 2008.

[2] G. W. Stewart. Introduction to Matrix Computations. Academic Press, 1973.

[3] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[4] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, 1963.

[5] C. B. Moler. Iterative refinement in floating point. J. ACM, 14(2):316–321, 1967.

[6] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 1996.

[7] J. Kurzak and J. J. Dongarra. Implementation of mixed precision in solving sys-
tems of linear equations on the CELL processor. Concurrency Computat. Pract.
Exper. to appear.

[8] J. Kurzak and J. J. Dongarra. Mixed precision dense linear system solver based
on cholesky factorization for the CELL processor. Concurrency Computat. Pract.
Exper. in preparation.

[9] G. W. Stewart. Matrix algorithms. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2001.

A Algorithm and Floating-Point Arithmetic Relations
For the following analisys the iterative refinement algorithm

1: Initialize x1

for k = 1, 2, ... do:
2: rk = b−Axk (εd)
3: solve Adk = rk (εs)
4: solve xk+1 = xk + dk (εd)

end for

performed in floating-point arithmetic is assumed, where the residual rk (step 2)
and the new approximate solution xk+1 (step 4) are computed using double precision
(εd) arithmetic, and the correction vector dk (step 3) is computed using single precision
(εs) arithmetic.

Step 3 is performed using a backward stable algorithm (for example Gaussian elim-
ination with partial pivoting, the GMRES method...).

Backward stability implies that there exists Hk such that

(A+Hk)dk = rk where ||Hk|| ≤ φ(n)εs||A||, (1)

where φ(n) is a reasonably small function of n. In other words, Equation (1) states that
the computed solution dk is an exact solution for an approximated problem.

Steps 2 and 4 are performed in double precision arithmetic and, thus, the classical
error bounds hold:

rk = fl(b−Ax) ≡ b−Axk+ek where ||ek|| ≤ ϕ1(n)εd(||A||·||xk||+||b||), (2)

xk+1 = fl(xk+dk) ≡ xk+dk+fk where ||fk|| ≤ ϕ2(n)εd(||xk||+ ||dk||). (3)

A.1 Results and Interpretation
Using Equations (1) (2) and (3), we will prove in Sectiion A.2 that for any k

||x− xk+1|| ≤ αF ||x− xk||+ βF ||x||, (4)

where αF and βF are defined as

αF =
φ(n)κ(A)εs

1− φ(n)κ(A)εs
+ 2ϕ1(n)κ(A)εd + ϕ2(n)εd + 2(1 + ϕ1(n)εd)ϕ2(n)κ(A)εd

(5)
βF = 4ϕ1(n)κ(A)εd + ϕ2(n)εd + 4(1 + ϕ1(n)εd)ϕ2(n)κ(A)εd. (6)

Note that αF and βF are of the form

αF = ψF (n)κ(A)εs and βF = ρF (n)κ(A)εd. (7)

For Equation (4) to hold, the matrix A is required to be not too ill-conditioned with
respect to the single-precision (εs) used; specifically the assumption in Equation (8) is
made:

(ρF (n)κ(A)εs)(1− ψF (n)κ(A)εs)−1 < 1 (8)

Assuming αF < 1, Equation (9) follows

||x− xk+1|| ≤ αkF ||x− x1||+ βF
1− αkF
1− αF

||x||, (9)

and so xk converges to x̃ ≡ limk→+∞ xk where

lim
k→+∞

||x− xk|| = ||x− x̃|| ≤ βF (1− αF)−1||x|| = ρF (n)κ(A)εd
1− ψF (n)κ(A)εs

||x||.

The term αF is the rate of convergence and depends on the condition number of the
matrixA, κ(A), and the single precision used, εs. The term βF is the limiting accuracy
of the method and depends on the double precision accuracy used, εd.

Regarding the backward error analysis, Section A.3 contains the proof for the fol-
lowing relation:

||b−Axk+1||
||A|| · ||xk+1||

≤ αB ·
||b−Axk||
||A|| · ||xk||

+ βB , (10)

where

αB =
φ(n)κ(A)γεs

1− φ(n)κ(A)εs
+ 2ϕ1(n)γεd, (11)

βB = (4ϕ1(n)γ + ϕ2(n)(1 + 2γ)(1− ϕ2(n)εd)−1)εd. (12)

Note that αB and βB are of the form

αB = ψB(n)κ(A)εs and βB = ρB(n)εd. (13)

For Equation (10) to hold it is necessary to assume that the matrix A is not too
ill-conditioned with respect to the single precision εs arithmetic used; namely, the fol-
lowing assumptions must hold:

ψF (n)κ(A)εs + (ρFκ(A)εs)(1− ψF (n)κ(A)εs)−1 < 1 and (14)

(ρB(n)εd)(1− ψB(n)κ(A)εs)−1 < 1. (15)

The term αB is the speed of convergence and depends on the condition number of the
matrix A, κ(A) and the single precision used, εs. the term βB is the limiting accuracy
of the method and depends on the double precision used, εd.

At convergence the following condition holds

lim
k→+∞

||b−Axk||
||A|| · ||xk||

= βB(1− αB)−1 =
ρB(n)

1− ψB(n)κ(A)εs
εd (16)

which states that the solver is normwise backward stable.

A.2 Forward Error Analysis
From [9] it is possible to prove that, if φ(n)κ(A)εs < 1/2, then (A +Hk) is nonsin-
gular and

(A+Hk)−1 = (I + Fk)A−1 where ||Fk|| ≤
φ(n)κ(A)εs

1− φ(n)κ(A)εs
< 1. (17)

From Equations (1) and (3) it comes

x− xk+1 = x− xk − (A+Hk)−1rk − fk,

and then using Equations (2) and (16)

x− xk+1 = x− xk − (I + Fk)A−1(b−Axk + ek)− fk
= x− xk − (I + Fk)(x− xk +A−1ek)− fk
= −Fk(x− xk)− (I + Fk)A−1ek − fk.

Taking the norms of both sides of the last equation and using the fact that ||Fk|| < 1,
see Equation (17), we get

||x− xk+1|| ≤ ||Fk|| · ||x− xk||+ 2 · ||A−1|| · ||ek||+ ||fk||.

Using Equations (2) and (3)

||x−xk+1|| ≤ ||Fk||·||x−xk||+2ϕ1(n)εd||A−1||·(||A||·||xk||+||b||)+ϕ2(n)εd(||xk||+||dk||).
(18)

Equations (19), (20) and (21) contain a bound for the quantities ||xk||, ||A||·||xk||+
||b|| and ||dk|| by the quantities ||x − xk|| and ||x||. Next step will be to inject these
three bounds in Equation (18) which will yield the final result on forward error given
in Equation (22).

Triangle inequality yields

||xk|| ≤ ||x− xk||+ ||x||. (19)

Then, using the fact that Ax = b,

||A|| · ||xk||+ ||b|| ≤ ||A|| · ||x− xk||+ 2 · ||A|| · ||x||. (20)

Finally, using Equations (1) and (4)

||dk|| = ||(A+Hk)−1rk|| = ||(I + Fk)A−1rk|| ≤ 2||A−1|| · ||rk||.

Equation (2) yields

||rk|| ≤ ||b||+ ||A|| · ||xk||+ ||ek|| ≤ (1 + ϕ1(n)εd) · (||A|| · ||xk||+ ||b||)

which, using Equation (20), can be transformed as

||dk|| ≤ 2 · (1 + ϕ1(n)εd) · κ(A) · (||x− xk||+ 2 · ||x||). (21)

Injecting Equations (19), (20) and (21) in Equation (18) yields

||x− xk+1|| ≤
[

φ(n)κ(A)εs

1−φ(n)κ(A)εs
+ 2ϕ1(n)κ(A)εd

+2(1 + ϕ1(n)εd)ϕ2(n)κ(A)εd

]
· ||x− xk||

+(4ϕ1(n)κ(A)εd + ϕ2(n)εd
+4(1 + ϕ1(n)εd)ϕ2(n)κ(A)εd) · ||x||.

(22)

If αF and βF are defined as

αF =
φ(n)κ(A)εs

1− φ(n)κ(A)εs
+ 2ϕ1(n)κ(A)εd +ϕ2(n)εd + 2(1 +ϕ1(n)εd)ϕ2(n)κ(A)εd,

(23)
βF = 4ϕ1(n)κ(A)εd + ϕ2(n)εd + 4(1 + ϕ1(n)εd)ϕ2(n)κ(A)εd, (24)

then

||x− xk+1|| ≤ αF ||x− xk||+ βF ||x||,
where αF = ψ(n)κ(A)εs and βF = ρ(n)κ(A)εd.

A.2.1 Bound on ||xk|| and ||dk|| in terms of ||xk+1||

Assuming, without loss of generality, that x1 = 0, from Equation (9) the following
inequalities can be derived

||xk|| ≤
(

1 + αk−1
F + βF

1− αk−1
F

1− αF

)
· ||x||,

||x|| ≤
(

1− αkF − βF
1− αkF
1− αF

)−1

· ||xk+1||.

From the assumption that αF + βF

1−αF
< 1 the following inequality holds

||xk|| ≤

(
1 + αk−1

F + βF
1−αk−1

F

1−αF

)
(

1− αkF − βF
1−αk

F

1−αF

) · ||xk+1||

and, by defining

γk ≡

(
1 + αk−1

F + βF
1−αk−1

F

1−αF

)
(

1− αkF − βF
1−αk

F

1−αF

) ≤ γ

the following formula is obtained

||xk|| ≤ γ · ||xk+1||. (25)

Equation (3) yields

||dk|| = ||xk+1 − xk − fk|| ≤ ||xk+1||+ (1 + ϕ2(n)εd)||xk||+ ϕ2(n)εd||dk||,

which, in combination with Equation (25) gives

||dk|| ≤ (1− ϕ2(n)εd)−1(1 + γ + ϕ2(n)γεd)||xk+1||. (26)

Note that the assumption

αF +
βF

1− αF
< 1 (27)

was made in this section.

A.3 Backward Error Analysis
From [9] it is possible to prove that, if φ(n)κ(A)εs < 1/2, then (A +Hk) is nonsin-
gular and

(A+Hk)−1 = A−1(I +Gk) where ||Gk|| ≤
φ(n)κ(A)εs

1− φ(n)κ(A)εs
< 1. (28)

Equations (1) and (3) yield

x− xk+1 = x− x+ k − (A+Hk)−1rk − fk,

and, then, using Equations (2) and (28)

x− xk+1 = x− xk −A−1(I +Gk)(b−Axk + ek)− fk.

Finally, multiplying both sides by A on the left

b−Axk+1 = −Gk(b−Axk)− (I +Gk)ek −Afk.

Taking the norm of both sides and using the fact that ||Gk|| < 1 gives

||b−Axk+1|| ≤ ||Gk|| · ||b−Axk||+ 2 · ||ek||+ ||A|| · ||fk||.

Using Equations (2) and (3) gives

||b−Axk+1|| ≤ ||Gk|| · ||b−Axk||+ (2ϕ1(n) + ϕ2(n))εd · ||A|| · ||xk||
+2ϕ1(n)εd · ||b||+ ϕ2(n)εd · ||A|| · ||dk||.

Assuming Equation (27) holds, Equations (25) and (26) can be used and, based on the
fact that ||b|| = ||b−Axk||+ ||A|| · ||xk||

||b−Axk+1|| ≤ (||Gk||+ 2ϕ1(n)εd) · ||b−Axk||
+(4ϕ1(n)γ + ϕ2(n)γϕ2(n)(1− ϕ2(n)εd)−1(1 + γ + ϕ2(n)γεd))εd · ||A|| · ||xk+1||.

Finally
||b−Axk+1||
||A|| · ||xk+1||

≤ αB ·
||b−Axk||
||A|| · ||xk||

+ βB ,

where

αB =
φ(n)κ(A)γεs

1− φ(n)κ(A)εs
+ 2ϕ1(n)γεd,

βB = (4ϕ1(n)γ + ϕ2(n)(1 + 2γ)(1− ϕ2(n)εd)−1)εd.

