
Exploiting Mixed Precision Floating
Point Hardware in Scientific

Computations

Alfredo BUTTARI a Jack DONGARRAa,b Jakub KURZAKa Julie LANGOUa

Julien LANGOUc Piotr LUSZCZEKa and Stanimire TOMOVa
aDepartment of Computer Science, University of Tennessee Knoxville

b Oak Ridge National Laboratory
 University of Manchester

 c University of Colorado at Denver and Health Sciences Center

Abstract. By using a combination of 32-bit and 64-bit floating point arithmetic,
the performance of many dense and sparse linear algebra algorithms can be signif-
icantly enhanced while maintaining the 64-bit accuracy of the resulting solution.
The approach presented here can apply not only to conventional processors but also
to exotic technologies such as Field Programmable Gate Arrays (FPGA), Graphical
Processing Units (GPU), and the Cell BE processor. Results on modern processor
architectures and the Cell BE are presented.

Keywords. Iterative refinement, factorization, Krylov methods

Introduction

In numerical computing, there is a fundamental performance advantage in using the sin-
gle precision, floating point data format over the double precision one. Due to more com-
pact representation, twice the number of single precision data elements can be stored
at each level of the memory hierarchy including the register file, the set of caches,
and the main memory. By the same token, handling single precision values consumes
less bandwidth between different memory levels and decreases the number of cache
and TLB misses. However, the data movement aspect affects mostly memory-intensive,
bandwidth-bound applications, historically have not drawn much attention to mixed pre-
cision algorithms.

In the past, the situation looked differently for computationally intensive workloads,
where the load was on the floating point processing units rather than the memory subsys-
tem, and so the single precision data motion advantages were for the most part irrelevant.
With the focus on double precision in the scientific computing, double precision execu-
tion units were fully pipelined and capable of completing at least one operation per clock
cycle. In fact, in many high performance processor designs single precision units were
eliminated in favor of emulating single precision operations using double precision cir-
cuitry. At the same time, a high degree of instruction level parallelism was being achieved
by introducing more functional units and relatively complex speculation mechanisms,
which did not necessarily guarantee full utilization of the hardware resources.

Table 1. Floating point performance characteristics ofindividual coresof modern, multi-core processor
architectures.

Architecture Clock DP Peak SP Peak

[GHz] [Gflop/s] [Gflop/s]

AMD Opteron 246 2.0 4 8

IBM PowerPC 970 2.5 10 20

Intel Xeon 5100 3.0 12 24

STI Cell BE 3.2 1.81 25.6

That situation began to change with the widespread adoptionof short vector, Single
Instruction Multiple Data (SIMD) processor extensions, which started appearing in the
mid 90s. An example of such extensions are the Intel MultiMedia eXtensions (MMX)
that were mostly meant to improve processor performance in Digital Signal Processing
(DSP) applications, graphics and computer games. Short vector, SIMD instructions are
a relatively cheap way of exploiting data level parallelismby applying the same opera-
tion to a vector of elements at once. It eliminates the hardware design complexity asso-
ciated with the bookkeeping involved in speculative execution. It also gives better guar-
antees for practically achievable performance than does runtime speculation, provided
that enough data parallelism exists in the computation. Most importantly, short vector,
SIMD processing provides the opportunity to benefit from replacing the double precision
arithmetic with the single precision one. Since the goal is to process the entire vector
in a single operation, the computation throughput doubles while the data storage space
halves.

Most processor architectures available today have been augmented, at some point,
in their design evolution with short vector, SIMD extensions. Examples include Stream-
ing SIMD Extensions (SSE) for the AMD and the Intel line of processors; Pow-
erPC’s Velocity Engine, AltiVec, and VMX; SPARC’s Visual Instruction Set (VIS); Al-
pha’s Motion Video Instructions (MVI); PA-RISC’s Multimedia Acceleration eXten-
sions (MAX); MIPS-3D Application Specific Extensions (ASP)and Digital Media Ex-
tensions (MDMX) and ARM’s NEON feature. The different architectures exhibit large
differences in their capabilities. The vector size is either 64 bits or, more commonly, 128
bits. The register file size ranges from just a few to as many as256 registers. Some exten-
sions only support integer types while others operate on single precision, floating point
numbers, and yet others process double precision values.

Today, the Synergistic Processing Element (SPE) of the CELLprocessor can proba-
bly be considered the state of the art in short vector, SIMD processing. Possessing 128-
byte long registers and a fully pipelined fused, multiply-add instruction, it is capable of
completing as many as eight single precision, floating pointoperations each clock cycle.
When combined with the size of the register file of 128 registers, it is capable of deliver-
ing close to peak performance on many common computationally intensive workloads.

Table 1 shows the difference in peak performance between single precision (SP) and
double precision (DP) of four modern processor architectures. Following the recent trend
in chip design, all of the presented processors are multi-core architectures. However, to
avoid introducing the complexity of thread-level parallelization to the discussion, we will
mainly look at the performance of individual cores throughout the chapter. The goal here
is to focus on instruction-level parallelism exploited by short vector SIMD’zation.

1The DP unit is not fully pipelined, and has a 7 cycle latency.

Although short vector, SIMD processors have been around forover a decade, the
concept of using those extensions to utilize the advantagesof single precision perfor-
mance in scientific computing did not come to fruition until recently, due to the fact that
most scientific computing problems require double precision accuracy. It turns out, how-
ever, that for many problems in numerical computing, it is possible to exploit the speed
of single precision operations and resort to double precision calculations at few stages
of the algorithm to achieve full double precision accuracy of the result. The techniques
described here are fairly general and can be applied to a widerange of problems in linear
algebra, such as solving linear systems of equations, leastsquare problems, singular and
eigenvalue problems. Here we are going to focus on solving linear systems of equations,
both dense and sparse, non-symmetric and symmetric, using direct methods, as well as
iterative, Krylov subspace methods.

In this paper, we are going to focus on solving linear systemsof equations, non-
symmetric and symmetric, dense (Section 1) and sparse, using direct methods (Section
2), as well as iterative, Krylov subspace methods (Section 3).

1. Direct Methods for Solving Dense Systems

1.1. Algorithm

Iterative refinement is a well known method for improving thesolution of a linear system
of equations of the formAx = b [1]. The standard approach to the solution of dense
linear systems is to use the LU factorization by means of Gaussian elimination. First, the
coefficient matrixA is factorized into the product of a lower triangular matrixL and an
upper triangular matrixU using LU decomposition. Commonly, partial row pivoting is
used to improve numerical stability resulting in the factorization P A = LU , whereP
is the row permutation matrix. The solution for the system isobtained by first solving
Ly = Pb (forward substitution) and then solvingUx = y (back substitution). Due to
the round-off error, the computed solutionx carries a numerical error magnified by the
condition number of the coefficient matrixA. In order to improve the computed solution,
an iterative refinement process is applied, which produces acorrection to the computed
solution at each iteration, which then yields the basic iterative refinement algorithm (Al-
gorithm 1). As Demmel points out [2], the non-linearity of the round-off error makes
the iterative refinement process equivalent to the Newton’smethod applied to the func-
tion f (x) = b− Ax. Provided that the system is not too ill-conditioned, the algorithm
produces a solution correct to the working precision. Iterative refinement is a fairly well
understood concept and was analyzed by Wilkinson [3], Moler[4] and Stewart [1].

The algorithm can be modified to use a mixed precision approach. The factorization
P A = LU and the solution of the triangular systemsLy = Pb andUx = y are com-
puted using single precision arithmetic. The residual calculation and the update of the so-
lution are computed using double precision arithmetic and the original double precision
coefficients. The most computationally expensive operations, including the factorization
of the coefficient matrixA and the forward and backward substitution, are performed
using single precision arithmetic and take advantage of itshigher speed. The only opera-
tions that must be executed in double precision are the residual calculation and the update
of the solution. It can be observed, that all operations ofO(n3) computational complex-

Algorithm 1 The iterative refinement method for the solution of linear systems

1: x0← A−1b
2: k = 1
3: repeat
4: rk ← b− Axk−1
5: zk ← A−1rk

6: xk ← xk−1 + zk

7: k← k + 1
8: until convergence

ity are handled in single precision, and all operations performed in double precision are
of at mostO(n2) complexity. The coefficient matrixA is converted to single precision
for the LU factorization and the resulting factors are also stored in single precision. At
the same time, the original matrix in double precision is preserved for the residual cal-
culation. The mixed precision, iterative refinement algorithm is outlined in Algorithm 2;
the(32) subscript means that the data is stored in 32-bit format (i.e., single precision) and
the absence of any subscript means that the data is stored in 64-bit format (i.e., double
precision). Implementation of the algorithm is provided inthe LAPACK package by the
routine DSGESV.

Algorithm 2 Solution of a linear system of equations using mixed precision, iterative
refinement. (SGETRF and SGETRS are names of LAPACK routines).

A(32), b(32)← A, b
L(32),U(32), P(32)← SGETRF(A(32))

x(1)
(32)← SGETRS(L(32),U(32), P(32), b(32))

x(1)← x(1)
(32)

i ← 0
repeat

i ← i + 1
r (i) ← b− Ax(i)

r (i)
(32)← r (i)

z(i)
(32)← SGETRS(L(32),U(32), P(32), r (i)

(32))

z(i) ← z(i)
(32)

x(i+1) ← x(i) + z(i)

until x(i) is accurate enough

Higham [5] gives error bounds for the single and double precision, iterative refine-
ment algorithm when the entire algorithm is implemented with the same precision (single
or double, respectively). He also gives error bounds in single precision arithmetic, with
refinement performed in double precision arithmetic [5]. The error analysis in double
precision, for our mixed precision algorithm (Algorithm 2), is given by Langou et al. [6].

The same technique can be applied to the case of symmetric, positive definite prob-
lems. Here, Cholesky factorization (LAPACK’s SPOTRF routine) can be used in place of
LU factorization (SGETRF), and a symmetric back solve routine (SPOTRS) can be used
in place of the routine for the general (non-symmetric) case(SGETRS). Also, the matrix-

Table 2. Hardware and software details of the systems used for performance experiments.

Architecture Clock Memory BLAS Compiler

[GHz] [MB]

AMD Opteron 246 2.0 2048 Goto-1.13 Intel-9.1

IBM PowerPC 970 2.5 2048 Goto-1.13 IBM-8.1

Intel Xeon 5100 3.0 4096 Goto-1.13 Intel-9.1

STI Cell BE 3.2 512 – Cell SDK-1.1

vector productAx can be implemented by the BLAS’ DSYMV routine, or DSYMM for
multiple right hand sides, instead of the DGEMV and DGEMM routines for the non-
symmetric case. The mixed precision algorithm for the symmetric, positive definite case
is presented by Algorithm 2. Implementation of the algorithm is provided in the LA-
PACK package by the routine DSPOSV.

Algorithm 3 Solution of a symmetric positive definite system of linear equations using
mixed precision, iterative refinement. (SPOTRF and SPOTRS are names of LAPACK
routines).

A(32), b(32)← A, b
L(32), LT

(32)←SPOTRF(A(32))

x(1)
(32)←SPOTRS(L(32), LT

(32), b(32))

x(1)← x(1)
(32)

i ← 0
repeat

i ← i + 1
r (i) ← b− Ax(i)

r (i)
(32)← r (i)

z(i)
(32)←SPOTRS(L(32), LT

(32), r (i)
(32))

z(i) ← z(i)
(32)

x(i+1) ← x(i) + z(i)

until x(i) is accurate enough

1.2. Experimental Results and Discussion

To collect performance results for the Xeon, Opteron and PowePC architectures, the
LAPACK iterative refinement routines DSGESV and DSPOSV wereused, for the non-
symmetric and symmetric cases, respectively. The routinesimplement classic, blocked
versions of the matrix factorizations and rely on the layer of Basic Linear Algebra Sub-
routines (BLAS) for architecture specific optimizations todeliver performance close to
the peak. As mentioned before, in order to simplify the discussion and leave out the as-
pect of parallelization, we have decided to look at the performance of individual cores
on the multi-core architectures.

Figures 1-8 show the performance of the single-core serial implementations of Al-
gorithm 2 and Algorithm 3 on the architectures in Table 2.

These figures show that the mixed precision, iterative refinement method can run
very close to the speed of the full single precision solver while delivering the same ac-

curacy as the full double precision one. On the AMD Opteron, Intel Woodcrest and IBM
PowerPC architectures (see Figures 1- 6), the mixed precision, iterative solver can pro-
vide a speedup of up to 1.8 for the unsymmetric solver and 1.5 for the symmetric one, if
the problem size is big enough. For small problem sizes, in fact, the cost of even a few
iterative refinement iterations is high compared to the costof the factorization and thus,
the mixed precision, iterative solver is less efficient thanthe full double precision one.

For the Cell processor (see Figures 7 and 8), parallel implementations of Algo-
rithms 2 and 3 have been produced in order to exploit the full computational power of the
processor. Due to the large difference between the single precision and double precision
floating point units (see Table 1), the mixed precision solver performs up to 7× and 11×
faster than the double precision peak in the unsymmetric andsymmetric, positive definite
cases respectively. Implementation details for this case can be found in [7, 8].

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

14

16

problem size

G
flo

p/
s

LU Solve −− Intel Woodcrest

Full−single
Mixed−prec
Full−double

Figure 1. Performance of mixed precision, iterative refinement for unsymmetric problems on Intel Woodcrest.

2. Direct Methods for Solving Sparse Systems

2.1. Algorithm

The mixed precision, iterative refinement methods apply to sparse operations as well as
to dense operations. In fact, even for sparse computations,single precision operations are
performed at a higher rate than double precision ones. The reason for this difference is
different than in the dense case. As already pointed out, in the dense case the difference is
due to the fact that vector units in the processors can exploit a higher level of parallelism
in the single precision computations than in the double precision ones.

Sparse computations are very difficult to vectorize due to their nature (mostly be-
cause of the very irregular memory access patterns and because of the heavy use of in-

0 1000 2000 3000 4000 5000
0

5

10

15

problem size

G
flo

p/
s

Cholesky Solve −− Intel Woodcrest

Full−single
Mixed−prec
Full−double

Figure 2. Performance of mixed precision, iterative refinement for symmetric, positive definite problems on
Intel Woodcrest.

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

problem size

G
flo

p/
s

LU Solve −− AMD Opteron246

Full−single
Mixed−prec
Full−double

Figure 3. Performance of mixed precision, iterative refinement for unsymmetric problems on AMD
Opteron246.

direct addressing). Even in the case where they can be vectorized, this optimization does
not have a significant effect on performance because sparse operations are inherently
memory bound, which means that the number crunching phase ismuch cheaper than the
cpu-memory communication phase. Despite all this, single precision computations can

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

problem size

G
flo

p/
s

Cholesky Solve −− AMD Opteron246

Full−single
Mixed−prec
Full−double

Figure 4. Performance of mixed precision, iterative refinement for symmetric, positive definite problems on
AMD Opteron246.

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

7

8

problem size

G
flo

p/
s

LU Solve −− IBM PowerPC 970

Full−single
Mixed−prec
Full−double

Figure 5. Performance of mixed precision, iterative refinement for unsymmetric problems on IBM PowerPC
970.

be performed at a speed that is up to 2× as fast as in double precision, since the amount
of data that is moved through the memory bus is twice as small.The mixed precision,
iterative refinement technique is thus applicable to the solution of sparse linear systems,
which is commonly achieved with either direct of iterative methods.

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

problem size

G
flo

p/
s

Cholesky Solve −− IBM PowerPC 970

Full−single
Mixed−prec
Full−double

Figure 6. Performance of mixed precision, iterative refinement for symmetric, positive definite problems on
IBM PowerPC 970.

500 1000 1500 2000 2500 3000 3500
0

50

100

150

problem size

G
flo

p/
s

LU Solve −− Cell Broadband Engine

Full−single
Mixed−precision
Peak−double

Figure 7. Performance of mixed precision, iterative refinement for unsymmetric problems on CELL Broad-
band Engine.

Most sparse direct methods for solving linear systems of equations are variants of
either multifrontal [9] or supernodal [10] factorization approaches. Here, we focus only
on multifrontal methods. For results on supernodal solverssee [11]. There are a number
of freely available packages that implement multifrontal methods. We have chosen for

1000 2000 3000 4000
0

50

100

150

200

problem size

G
flo

p/
s

Cholesky Solve −− Cell Broadband Engine

Full−single

Mixed−precision

Peak−double

Figure 8. Performance of mixed precision, iterative refinement for symmetric, positive definite problems on
CELL Broadband Engine.

our tests the software package called MUMPS [12–14]. The main reason for selecting
this software is that it is implemented in both single and double precision, which is not
the case for other freely available multifrontal solvers such as UMFPACK [15–17].

Using the MUMPS package for solving systems of linear equations can be described
in three distinct steps:

1. System Analysis: in this phase the system sparsity structure is analyzed in order
to estimate the element fill-in, which provides an estimate of the memory that
will be allocated in the following steps. Also, pivoting is performed based on
the structure ofA+ AT , ignoring numerical values. Only integer operations are
performed at this step.

2. Matrix Factorization: in this phase theP A = LU factorization is performed.
This is the computationally most expensive step of the system solution.

3. System Solution: the system is solved in two steps:Ly = Pb andUx = y.

Once steps 1 and 2 are performed, each iteration of the refinement loop needs only
to perform the system solution (i.e., step 3). The cost of theiterative refinement steps is
lower than the advantage obtained by performing the system solution in single precision
if the number of iterations is limited. The implementation of a mixed precision, iterative
refinement method with the MUMPS package can thus be summarized as in algorithm 4.

At the end of each line of the algorithm, we indicate the precision used to perform
this operation as eitherǫs, for single precision computation, orǫd, for double precision
computation. Based on backward stability analysis, the solution x can be considered as
accurate as the double precision one when

‖b− Ax‖2 ≤ ‖x‖2 · ‖A‖ f ro · ǫ ·
√

n

Algorithm 4 Mixed precision, Iterative Refinement with the MUMPS package

1: system analysis
2: LU← P A (ǫs)
3: solveLy = Pb (ǫs)
4: solveUx0 = y (ǫs)

k← 1
5: until convergencedo:
6: rk ← b− Axk−1 (ǫd)
7: solveLy = Prk (ǫs)
8: solveUzk = y (ǫs)
9: xk ← xk−1+ zk (ǫd)

k← k+ 1
10: done

where‖ · ‖ f ro is the Frobenius norm. The iterative method is stopped when the double
precision accuracy is achieved or a maximum number of iterations is reached.

2.2. Experimental Results and Discussion

The method in Algorithm 4 can offer significant improvementsfor the solution of a
sparse linear system in many cases if:

1. the number of iterations is not too high.
2. the cost of each iteration is small as compared to the cost of the system factoriza-

tion. If the cost of each iteration is too high, then a low number of iterations will
result in a performance loss with respect to the full double precision solver. In
the sparse case, for a fixed matrix size, both the cost of the system factorization
and the cost of the iterative refinement step may substantially vary depending on
the number of nonzeroes and the matrix sparsity structure.

The efficiency of the mixed precision, iterative refinement approach on sparse direct
solvers is shown in Figures 9, 10 and 11. These figures report the performance ratio be-
tween the full single precision and full double precision solvers (light colored bars) and
the mixed precision and full-double precision solvers (dark colored bars) for six matri-
ces from real world applications. The number on top of each bar shows how many itera-
tions are performed by the mixed precision, iterative method to achieve double precision
accuracy.

The data in Figures 9, 10 and 11 have been measured using the architectures listed
in Table 1 (except for the Cell processor) on a number of matrices from real world ap-
plications. These matrices are reported in Table 3 and are grouped into symmetric and
unsymmetric ones because the MUMPS package uses different numerical methods for
these two classes of matrices.

3. Iterative Methods for Solving Sparse Systems

Direct sparse methods suffer from fill-ins and, consequently, high memory requirements
as well as extended execution time. There are various reordering techniques designed to

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

matrix no.

sp
ee

du
p

Intel Woodcrest 3.0 GHz

3
3

3
2

2

2

Single/double
Mixed prec./double

Figure 9. Mixed precision, iterative refinement with the MUMPS directsolver on an Intel Woodcrest 3.0 GHz
system.

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

matrix no.

sp
ee

du
p

AMD Opteron 246 2.0 GHz

2 4

2

2
2

2

Single/double
Mixed prec./double

Figure 10. Mixed precision, iterative refinement with the MUMPS directsolver on an AMD Opteron 246 2.0
GHz system.

minimize the amount of fill-ins. Nevertheless, for problemsof increasing size, there is a
point where they become prohibitively high and direct sparse methods are no longer fea-
sible. Iterative methods are a remedy, since only a few working vectors and the primary
data are required [18, 19].

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

matrix no.

sp
ee

du
p

PowerPC 970 2.5 GHz

3 3
3

2 2

2

Single/double
Mixed prec./double

Figure 11. Mixed precision, iterative refinement with the MUMPS directsolver on an IBM PowerPC 970 2.5
GHz system.

Table 3. Test matrices for sparse mixed precision, iterative refinement solution methods.

num. Matrix Size Nonzeroes symm. pos. def. Cond. Numb.

1 SiO 33401 1317655 yes no O(103)

2 Lin 25600 1766400 yes no O(105)

3 c-71 76638 859554 yes no O(10)

4 cage-11 39082 559722 no no O(1)

5 raefsky3 21200 1488768 no no O(10)

6 poisson3Db 85623 2374949 no no O(103)

As an example, let us first consider the iterative refinement itself, described in Algo-
rithm 1 as

xi+1 = xi + M(b− Axi), (1)

whereM is (LU)−1P. Iterative methods of this form (i.e. whereM does not depend on
the iteration numberi) are also known asstationary. Matrix M can be as simple as a
scalar value (the method then becomes a modified Richardson iteration) or as complex
as(LU)−1P. In either case,M is called apreconditioner. It should approximateA−1,
and the quality of the approximation determines the convergence properties of (1). In
general, a preconditioner is intended to improve the robustness and the efficiency of the
iterative algorithms. Note that (1) can also be interpretedas a Richardson iteration in
solvingM Ax = Mb (calledleft preconditioning). Another possibility, which we will use
in the mixed precision, iterative methods to be described later, is to haveright precondi-
tioning, where the original problemAx = b is transformed into a problem of solving

AMu= b, x = Mu

iteratively. Related to the overall efficiency,M needs to be easy to compute, apply, and
store. Note that these requirements were addressed in the mixed precision methods above
by replacingM (coming from LU factorization ofA followed by matrix inversion), with
its single precision representation so that arithmetic operations can be performed more
efficiently on it. Here, we go two steps further: we consider replacing not onlyM by an
inner loop of incomplete iterative solver performed in single precision arithmetic [20] ,
but also the outer loop by more sophisticated iterative methods (e.g., Krylov type).

3.1. Mixed Precision, Inner-Outer Iterative Solvers

Note that replacingM by an iterative method leads tonestingof two iterative methods.
Variations of this type of nesting, also known in the literature as aninner-outeriteration,
have been studied, both theoretically and computationally[21–27]. The general appeal
of these methods is that computational speedup is possible when the inner solver uses an
approximation of the original matrixA that is also faster to apply (e.g., in our case, using
single precision arithmetic). Moreover, even if no faster matrix-vector product is avail-
able, speedup can often be observed due to improved convergence (e.g., see [23], where
Simoncini and Szyld explain the possible benefits of FGMRES-GMRES over restarted
GMRES).

To illustrate the above concepts, we demonstrate the ideas with a mixed precision,
inner-outer iterative solver that is based on the restartedGeneralized Minimal RESid-
ual (GMRES) method. Namely, consider Algorithm 5, where forthe outer loop we take
the flexible GMRES (FGMRES [19, 22]) and for the inner loop theGMRES in single
precision arithmetic (denoted by GMRESS P). FGMRES, a minor modification to the
standard GMRES, is meant to accommodate non-constant preconditioners. Note that in
our case, this non-constant preconditioner is GMRESS P. The resulting method is de-
noted by FGMRES(mout)-GMRESS P(min) wheremin is the restart for the inner loop
andmout for the outer FGMRES.

The potential benefits of FGMRES compared to GMRES are becoming better un-
derstood [23]. Numerical experiments confirm cases of improvements in speed, robust-
ness, and sometimes memory requirements for these methods.For example, we show a
maximum speedup of close to 15 on the selected test problems.The memory require-
ments for the method are the matrixA in CRS format, the nonzero matrix coefficients
in single precision, 2mout number of vectors in double precision, andmin number of
vectors in single precision.

The Generalized Conjugate Residuals (GCR) method [26, 28] is comparable to the
FGMRES and can replace it successfully as the outer iterative solver.

3.2. Numerical Performance

Similar to the case of sparse direct solvers, we demonstratethe numerical performance
of Algorithm 5 on the architectures from Table 1 and on the matrices from Table 3.

Figure 12 shows the performance ratio of the mixed precision, inner-outer FGMRES-
GMRESS P vs. the full, double precision, inner-outer FGMRES-GMRESD P, i.e., here
we compare two inner-outer algorithms that do the same, withthe only difference being
that their inner loop’s incomplete solvers are performed incorrespondingly single and
double precision arithmetic.

Algorithm 5 Mixed precision, inner-outer FGMRES(mout)-GMRESS P(min)
1: for i = 0, 1, ... do
2: r = b− Axi

3: β = h1,0 = ||r ||2
4: check convergence and exit if done
5: for k = 1, . . . , mout do
6: vk = r / hk,k−1
7: One cycle of GMRESS P(min) in solving Azk = vk, initial guesszk = 0
8: r = A zk

9: for j=1,. . . ,kdo
10: h j ,k = r Tv j

11: r = r − h j ,k v j

12: end for
13: hk+1,k = ||r ||2
14: if hk+1,k is small enoughthen break
15: end for
16: // Define Zk = z1, . . . , zk, Hk = {hi, j }1≤i≤k+1,1≤ j≤k

17: Find Wk = w1, . . . , wk
T that minimizes||b− A(xi + Zk Wk)||2

18: // note: or equivalently, findWk that minimizes||βe1− Hk Wk||2
19: xi+1 = xi + Zk Wk

20: end for

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

matrix no.

sp
ee

du
p

GMRES SP−DP/DP−DP

Intel Woodcrest
AMD Opteron 246
IBM PowerPC 970

Figure 12. Mixed precision, iterative refinement with FGMRES-GMRESSP from Algorithm 5 vs. DP
FGMRES-GMRESDP.

Figure 13 shows the performance ratio of the mixed precision, inner-outer FGMRES-
GMRESS P vs.double precision GMRES. This is an experiment that shows that inner-
outer type iterative methods may be very competitive compared to their original counter-

1 2 3 4 5 6
0

5

10

15

matrix no.

sp
ee

du
p

GMRES SP−DP/DP

Intel Woodcrest
AMD Opteron 246
IBM PowerPC 970

Figure 13. Mixed precision, iterative refinement with FGMRES-GMRESSP from Algorithm 5vs full double
precision FGMRES-GMRESDP .

parts. For example, we observe a speedup for matrix #4 of up to15 which is mostly due
to an improved convergence of the inner-outer GMRESvs.GMRES (e.g., about 9.86 of
the 15-fold speedup for matrix # 4 on the IBM PowerPC architecture is due to improved
convergence). The portion of the 15-fold speedup that is dueexclusively to singlevs.
double precision arithmetic can be seen in Figure 12 (about 1.5 for the IBM PowerPC).

References

[1] G. W. Stewart.Introduction to Matrix Computations. Academic Press, 1973.
[2] J. W. Demmel.Applied Numerical Linear Algebra. SIAM, 1997.
[3] J. H. Wilkinson.Rounding Errors in Algebraic Processes. Prentice-Hall, 1963.
[4] C. B. Moler. Iterative refinement in floating point.J. ACM, 14(2):316–321, 1967.
[5] N. J. Higham.Accuracy and Stability of Numerical Algorithms. SIAM, 1996.
[6] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari,and J. J. Dongarraa. Ex-

ploiting the performance of 32 bit floating point arithmeticin obtaining 64 bit ac-
curacy. InProceedings of the 2006 ACM/IEEE Conference on Supercomputing,
2006.

[7] J. Kurzak and J. J. Dongarra. Implementation of mixed precision in solving systems
of linear equations on the CELL processor.Concurrency Computat. Pract. Exper.
to appear.

[8] J. Kurzak and J. J. Dongarra. Mixed precision dense linear system solver based
on cholesky factorization for the CELL processor.Concurrency Computat. Pract.
Exper. in preparation.

[9] Iain S. Duff and John K. Reid. The multifrontal solution of indefinite sparse sym-
metric linear equations. 9(3):302–325, September 1983.

[10] Cleve Ashcraft, R. Grimes, J. Lewis, Barry W. Peyton, and Horst Simon. Progress
in sparse matrix methods in large sparse linear systems on vector supercomputers.
Intern. J. of Supercomputer Applications, 1:10–30, 1987.

[11] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Piotr Luszczek, and Stanmire To-
mov. Computations to enhance the performance while achieving the 64-bit accu-
racy. Technical Report UT-CS-06-584, University of Tennessee Knoxville, Novem-
ber 2006. LAPACK Working Note 180.

[12] Patrick R. Amestoy, Iain S. Duff, and J.-Y. L’Excellent. Multifrontal parallel dis-
tributed symmetric and unsymmetric solvers.Comput. Methods Appl. Mech. Eng.,
184:501–520, 2000.

[13] Patrick R. Amestoy, Iain S. Duff, J.-Y. L’Excellent, and Jacko Koster. A fully
asynchronous multifrontal solver using distributed dynamic scheduling. 23:15–41,
2001.

[14] Patrick R. Amestoy, A. Guermouche, J.-Y. L’Excellent,and S. Pralet. Hybrid
scheduling for the parallel solution of linear systems.Parallel Comput., 32:136–
156, 2006.

[15] Timothy A. Davis Iain S. Duff. An unsymmetric-pattern multifrontal method for
sparse LU factorization. 18:140–158, 1997.

[16] Timothy A. Davis. A combined unifrontal/multifrontalmethod for unsymmetric
sparse matrices. 25:1–19, 1999.

[17] Timothy A. Davis. A column pre-ordering strategy for the unsymmetric-pattern
multifrontal method. 30:196–199, 2004.

[18] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato,Jack Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. V. der Vorst.Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods.Philadalphia: Society for
Industrial and Applied Mathematics., 1994. Also availableas postscript file at
http://www.netlib.org/templates/Templates.html.

[19] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2003.

[20] Kathryn Turner and Homer F. Walker. Efficient high accuracy solutions with gm-
res(m).SIAM J. Sci. Stat. Comput., 13(3):815–825, 1992.

[21] Gene H. Golub and Qiang Ye. Inexact preconditioned conjugate gradient method
with inner-outer iteration. SIAM Journal on Scientific Computing, 21(4):1305–
1320, 2000.

[22] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. Technical Re-
port 91-279, Department of Computer Science and Egineering, University of Min-
nesota, Minneapolis, Minnesota, 1991.

[23] Valeria Simoncini and Daniel B. Szyld. Flexible inner-outer Krylov subspace meth-
ods.SIAM J. Numer. Anal., 40(6):2219–2239, 2002.

[24] O. Axelsson and P. S. Vassilevski. A black box generalized conjugate gradient
solver with inner iterations and variable-step preconditioning.SIAM J. Matrix Anal.
Appl., 12(4):625–644, 1991.

[25] Y. Notay. Flexible conjugate gradients.SIAM Journal on Scientic Computing,
22:1444–1460, 2000.

[26] C. Vuik. New insights in gmres-like methods with variable preconditioners.J.
Comput. Appl. Math., 61(2):189–204, 1995.

[27] J. van den Eshof, G. L. G. Sleijpen, and M .B. van Gijzen. Relaxation strategies
for nested Krylov methods. Technical Report TR/PA/03/27, CERFACS, Toulouse,
France, 2003.

[28] H. A. van der Vorst and C. Vuik. GMRESR: a family of nestedGMRES methods.
Numerical Linear Algebra with Applications, 1(4):369–386, 1994.

