Exploiting Mixed Precision Floating
Point Hardware in Scientific
Computations

Alfredo BUTTARI 2 Jack DONGARRA® Jakub KURZAK? Julie LANGOU?
Julien LANGOUF Piotr LUSZCZEK® and Stanimire TOMOW
aDepartment of Computer Science, University of Tennessee Knoxville
bOak Ridge National Laboratory
University of Manchester
CUniversity of Colorado at Denver and Health Sciences Center

Abstract. By using a combination of 32-bit and 64-bit floating point arithmetic,

the performance of many dense and sparse linear algebra algorithms can be signif-
icantly enhanced while maintaining the 64-bit accuracy of the resulting solution.
The approach presented here can apply not only to conventional processors but also
to exotic technologies such as Field Programmable Gate Arrays (FPGA), Graphical
Processing Units (GPU), and the Cell BE processor. Results on modern processor
architectures and the Cell BE are presented.

Keywords. lterative refinement, factorization, Krylov methods

Introduction

In numerical computing, there is a fundamental performance advantage in using the sin-
gle precision, floating point data format over the double precision one. Due to more com-
pact representation, twice the number of single precision data elements can be stored
at each level of the memory hierarchy including the register file, the set of caches,
and the main memory. By the same token, handling single precision values consumes
less bandwidth between different memory levels and decreases the number of cache
and TLB misses. However, the data movement aspect affects mostly memory-intensive,
bandwidth-bound applications, historically have not drawn much attention to mixed pre-
cision algorithms.

In the past, the situation looked differently for computationally intensive workloads,
where the load was on the floating point processing units rather than the memory subsys-
tem, and so the single precision data motion advantages were for the most part irrelevant.
With the focus on double precision in the scientific computing, double precision execu-
tion units were fully pipelined and capable of completing at least one operation per clock
cycle. In fact, in many high performance processor designs single precision units were
eliminated in favor of emulating single precision operations using double precision cir-
cuitry. At the same time, a high degree of instruction level parallelism was being achieved
by introducing more functional units and relatively complex speculation mechanisms,
which did not necessarily guarantee full utilization of the hardware resources.

Table 1. Floating point performance characteristics inflividual coresof modern, multi-core processor
architectures.

Architecture Clock DP Peak SP Peak
[GHz] [Gflop/s] [Gflop/s]
AMD Opteron 246 2.0 4 8
IBM PowerPC 970 25 10 20
Intel Xeon 5100 3.0 12 24
STI Cell BE 3.2 1.8 25.6

That situation began to change with the widespread adopfishort vector, Single
Instruction Multiple Data (SIMD) processor extensionsjathstarted appearing in the
mid 90s. An example of such extensions are the Intel MultidexKtensions (MMX)
that were mostly meant to improve processor performancegitdd Signal Processing
(DSP) applications, graphics and computer games. Shotbry&iMD instructions are
a relatively cheap way of exploiting data level parallelisynapplying the same opera-
tion to a vector of elements at once. It eliminates the hardwasign complexity asso-
ciated with the bookkeeping involved in speculative exiecutlt also gives better guar-
antees for practically achievable performance than doetsmne speculation, provided
that enough data parallelism exists in the computation.tNMoportantly, short vector,
SIMD processing provides the opportunity to benefit fromaeimg the double precision
arithmetic with the single precision one. Since the goabiprocess the entire vector
in a single operation, the computation throughput doubledewhe data storage space
halves.

Most processor architectures available today have beemenigd, at some point,
in their design evolution with short vector, SIMD extensoBxamples include Stream-
ing SIMD Extensions (SSE) for the AMD and the Intel line of pegsors; Pow-
erPC’s Velocity Engine, AltiVec, and VMX; SPARC’s Visualdtruction Set (VIS); Al-
pha’'s Motion Video Instructions (MVI); PA-RISC’s Multiméal Acceleration eXten-
sions (MAX); MIPS-3D Application Specific Extensions (AS&)d Digital Media Ex-
tensions (MDMX) and ARM’s NEON feature. The different angutures exhibit large
differences in their capabilities. The vector size is githebits or, more commonly, 128
bits. The register file size ranges from just a few to as mar2pésegisters. Some exten-
sions only support integer types while others operate agiesiprecision, floating point
numbers, and yet others process double precision values.

Today, the Synergistic Processing Element (SPE) of the Qftbtessor can proba-
bly be considered the state of the art in short vector, SIM&Z@ssing. Possessing 128-
byte long registers and a fully pipelined fused, multiptydanstruction, it is capable of
completing as many as eight single precision, floating pmetrations each clock cycle.
When combined with the size of the register file of 128 regsstieéis capable of deliver-
ing close to peak performance on many common computatioiminsive workloads.

Table 1 shows the difference in peak performance betweglegimecision (SP) and
double precision (DP) of four modern processor architestufollowing the recent trend
in chip design, all of the presented processors are mulé-acchitectures. However, to
avoid introducing the complexity of thread-level paraflation to the discussion, we will
mainly look at the performance of individual cores througttbe chapter. The goal here
is to focus on instruction-level parallelism exploited Iog vector SIMD’zation.

1The DP unit is not fully pipelined, and has a 7 cycle latency.

Although short vector, SIMD processors have been aroundver a decade, the
concept of using those extensions to utilize the advantafysmgle precision perfor-
mance in scientific computing did not come to fruition ungitently, due to the fact that
most scientific computing problems require double prenisiccuracy. It turns out, how-
ever, that for many problems in numerical computing, it isgible to exploit the speed
of single precision operations and resort to double precisalculations at few stages
of the algorithm to achieve full double precision accuratyhe result. The techniques
described here are fairly general and can be applied to arardge of problems in linear
algebra, such as solving linear systems of equations,dgastre problems, singular and
eigenvalue problems. Here we are going to focus on solvirgali systems of equations,
both dense and sparse, non-symmetric and symmetric, usexj thethods, as well as
iterative, Krylov subspace methods.

In this paper, we are going to focus on solving linear systefmsquations, non-
symmetric and symmetric, dense (Section 1) and sparseay dsiect methods (Section
2), as well as iterative, Krylov subspace methods (Sectjon 3

1. Direct Methods for Solving Dense Systems
1.1. Algorithm

Iterative refinement is a well known method for improving siméution of a linear system
of equations of the formrAx = b [1]. The standard approach to the solution of dense
linear systems is to use the LU factorization by means of G8an®limination. First, the
coefficient matrixA is factorized into the product of a lower triangular matribxand an
upper triangular matrixJ using LU decomposition. Commonly, partial row pivoting is
used to improve numerical stability resulting in the fazation PA = LU, whereP
is the row permutation matrix. The solution for the systernhitained by first solving
Ly = Pb (forward substitutioh and then solvind x = y (back substitution Due to
the round-off error, the computed solutigrcarries a numerical error magnified by the
condition number of the coefficient matri In order to improve the computed solution,
an iterative refinement process is applied, which producesrection to the computed
solution at each iteration, which then yields the basi@itee refinement algorithm (Al-
gorithm 1). As Demmel points out [2], the non-linearity okthound-off error makes
the iterative refinement process equivalent to the Newtorethod applied to the func-
tion f(x) = b — Ax. Provided that the system is not too ill-conditioned, thgoathm
produces a solution correct to the working precision. tieeaefinement is a fairly well
understood concept and was analyzed by Wilkinson [3], Mdleand Stewart [1].

The algorithm can be modified to use a mixed precision approdee factorization
P A = LU and the solution of the triangular systeing = PbandUx = y are com-
puted using single precision arithmetic. The residualdatoon and the update of the so-
lution are computed using double precision arithmetic &edariginal double precision
coefficients. The most computationally expensive openatimcluding the factorization
of the coefficient matrixA and the forward and backward substitution, are performed
using single precision arithmetic and take advantage digfiser speed. The only opera-
tions that must be executed in double precision are theuakidlculation and the update
of the solution. It can be observed, that all operation®@i®) computational complex-

Algorithm 1 The iterative refinement method for the solution of lineastegns
1. Xo < A~1lp
22k=1
3: repeat
40 gk <~ b—Ax_1
5 7z « A7l
6
7
8

Xk €= Xk—1 + Z
kKe—k+1
: until convergence

ity are handled in single precision, and all operationsgrentd in double precision are
of at mostO(n?) complexity. The coefficient matrix is converted to single precision
for the LU factorization and the resulting factors are alswed in single precision. At
the same time, the original matrix in double precision isspreed for the residual cal-
culation. The mixed precision, iterative refinement algyoni is outlined in Algorithm 2;
the (32) subscript means that the data is stored in 32-bit forma §iregle precision) and
the absence of any subscript means that the data is storedbit ®rmat (i.e., double
precision). Implementation of the algorithm is providedhe LAPACK package by the
routine DSGESV.

Algorithm 2 Solution of a linear system of equations using mixed prenisiterative
refinement. (SGETRF and SGETRS are names of LAPACK routines)

A@o), b@Ey < Ab

L(32), U@32), P32 < SGETRKA(32)

X((gl)z) < SGETRSL (32), U32), P32), b32)

1 @
XD X3

i <0
repeat
i —i+1
r « b— Ax®
r((é)z) —r® |
Z§|3)2) — SGETR$L(32), U(32), P(32), I’((:Ia)z))
i ()
z('.) < Zgy |
X(H‘l) P X(') + Z(I)
until x) is accurate enough

Higham [5] gives error bounds for the single and double [sieni iterative refine-
ment algorithm when the entire algorithm is implementedhhie same precision (single
or double, respectively). He also gives error bounds inlgipgecision arithmetic, with
refinement performed in double precision arithmetic [5]eTrror analysis in double
precision, for our mixed precision algorithm (Algorithm & given by Langou et al. [6].

The same technique can be applied to the case of symmetsitivpalefinite prob-
lems. Here, Cholesky factorization (LAPACK’s SPOTRF rae)ican be used in place of
LU factorization (SGETRF), and a symmetric back solve maiiISPOTRS) can be used
in place of the routine for the general (non-symmetric) ¢8&&ETRS). Also, the matrix-

Table 2. Hardware and software details of the systems used for pesioce experiments.

Architecture Clock Memory BLAS Compiler
[GHZ] [MB]

AMD Opteron 246 2.0 2048 Goto-1.13 Intel-9.1

IBM PowerPC 970 25 2048 Goto-1.13 IBM-8.1

Intel Xeon 5100 3.0 4096 Goto-1.13 Intel-9.1

STI Cell BE 3.2 512 - Cell SDK-1.1

vector productAx can be implemented by the BLAS’ DSYMV routine, or DSYMM for
multiple right hand sides, instead of the DGEMV and DGEMMtioes for the non-
symmetric case. The mixed precision algorithm for the syinimygositive definite case
is presented by Algorithm 2. Implementation of the algoritls provided in the LA-
PACK package by the routine DSPOSV.

Algorithm 3 Solution of a symmetric positive definite system of lineana&tipns using
mixed precision, iterative refinement. (SPOTRF and SPOTRSames of LAPACK
routines).
A@32), b2 « Ab
L((32), L(32) %SPOTREA@Z))
1 T
X(32) (—SPOTR$L(32), L(32), b(32))
1 (€]
_X()« X(32)
i <0
repeat
i —i+1
r b Ax0)
r(('3)2) —r®
() T)
Z35 < SPOTRS$L (32), L (35, (32
[()
z('.) <2 |
X(H‘l) «— X(') + Z(I)
until x) is accurate enough

1.2. Experimental Results and Discussion

To collect performance results for the Xeon, Opteron and éR@varchitectures, the
LAPACK iterative refinement routines DSGESV and DSPOSV wesed, for the non-
symmetric and symmetric cases, respectively. The routmpkement classic, blocked
versions of the matrix factorizations and rely on the layf@asic Linear Algebra Sub-
routines (BLAS) for architecture specific optimizationsdieliver performance close to
the peak. As mentioned before, in order to simplify the dss@an and leave out the as-
pect of parallelization, we have decided to look at the penfnce of individual cores
on the multi-core architectures.

Figures 1-8 show the performance of the single-core senplémentations of Al-
gorithm 2 and Algorithm 3 on the architectures in Table 2.

These figures show that the mixed precision, iterative referg method can run
very close to the speed of the full single precision solveillevtielivering the same ac-

curacy as the full double precision one. On the AMD OpterotellWoodcrest and IBM
PowerPC architectures (see Figures 1- 6), the mixed poegigerative solver can pro-
vide a speedup of up to 1.8 for the unsymmetric solver andak.theé symmetric one, if
the problem size is big enough. For small problem sizes,dt) tae cost of even a few
iterative refinement iterations is high compared to the ob#te factorization and thus,
the mixed precision, iterative solver is less efficient tianfull double precision one.

For the Cell processor (see Figures 7 and 8), parallel impfeations of Algo-
rithms 2 and 3 have been produced in order to exploit the futigutational power of the
processor. Due to the large difference between the singldgion and double precision
floating point units (see Table 1), the mixed precision sobezforms up to % and 11x
faster than the double precision peak in the unsymmetrisgmnetric, positive definite
cases respectively. Implementation details for this casebe found in [7, 8].

LU Solve —- Intel Woodcrest
16 [T T T T
14+
12r
o 101
3
2 8f
O]
6 L
4 -
/ —o—Full-single
2 —— Mixed-prec|-
- - —Full-double
0 i i i 1
0 1000 2000 3000 4000 5000
problem size

Figure 1. Performance of mixed precision, iterative refinement f@ymmetric problems on Intel Woodcrest.

2. Direct Methods for Solving Sparse Systems
2.1. Algorithm

The mixed precision, iterative refinement methods applytrse operations as well as
to dense operations. In fact, even for sparse computasonge precision operations are
performed at a higher rate than double precision ones. Tdsorefor this difference is
differentthan in the dense case. As already pointed outgilénse case the difference is
due to the fact that vector units in the processors can edgldgher level of parallelism
in the single precision computations than in the doubleipi@t ones.

Sparse computations are very difficult to vectorize due &rthature (mostly be-
cause of the very irregular memory access patterns and $ecdthe heavy use of in-

Cholesky Solve —— Intel Woodcrest
15 T T T T

Gflop/s

! —e—Full-single
—— Mixed—prec
- - —Full-double

0 1000 2000 3000 4000 5000
problem size

Figure 2. Performance of mixed precision, iterative refinement fansyetric, positive definite problems on
Intel Woodcrest.

LU Solve —— AMD Opteron246

6 L
5 L
ol
3
i)
O 3f
2 L
—o—Full-single
1 —— Mixed—prec| |
- - —Full-double
0 i i i 1
0 1000 2000 3000 4000 5000

problem size

Figure 3. Performance of mixed precision, iterative refinement foisyummetric problems on AMD
Opteron246.

direct addressing). Even in the case where they can be i@sdothis optimization does
not have a significant effect on performance because spae@tmns are inherently
memory bound, which means that the number crunching phasedk cheaper than the
cpu-memory communication phase. Despite all this, singbeipion computations can

Cholesky Solve —— AMD Opteron246

—o—Full-single | |

r —— Mixed—prec
- - —Full-double
0 i i i 1
0 1000 2000 3000 4000 5000

problem size

Figure 4. Performance of mixed precision, iterative refinement fansyetric, positive definite problems on
AMD Opteron246.

LU Solve —— IBM PowerPC 970
8 L
7 [
6 L
© 57
o
S
G 4
3 L
2r . i
—e— Full-single
1t —— Mixed—prec|
- - —Full-double
0 i i i 1
0 1000 2000 3000 4000 5000
problem size

Figure 5. Performance of mixed precision, iterative refinement fasymmetric problems on IBM PowerPC
970.

be performed at a speed that is up to &s fast as in double precision, since the amount
of data that is moved through the memory bus is twice as sifiladl. mixed precision,
iterative refinement technique is thus applicable to thetsmi of sparse linear systems,
which is commonly achieved with either direct of iterativetimods.

Cholesky Solve —— IBM PowerPC 970

101 s 1
8t i
L 6t .
o
i)
O
a4t i
2F —o—Full-single |
] —— Mixed-prec
- - —Full-double
0 i i i 1
0 1000 2000 3000 4000 5000

problem size

Figure 6. Performance of mixed precision, iterative refinement fansyetric, positive definite problems on
IBM PowerPC 970.

LU Solve —- Cell Broadband Engine

150 T T T T T T T
—o— Full-single
—— Mixed—precision
- - - Peak—-double
100¢
(]
Fe3
i)
o
50

500 1000 1500 2000 2500 3000 3500
problem size

Figure 7. Performance of mixed precision, iterative refinement fasyummetric problems on CELL Broad-
band Engine.

Most sparse direct methods for solving linear systems o&ggus are variants of
either multifrontal [9] or supernodal [10] factorizatiop@oaches. Here, we focus only
on multifrontal methods. For results on supernodal solsees[11]. There are a number
of freely available packages that implement multifront&thods. We have chosen for

Cholesky Solve —— Cell Broadband Engine
200 ‘ ‘ ; ;
150} =7
L
& 100} ;
o) —o—Full-single
—— Mixed—precision
50 - — ~Peak—-double |
0 i i i
1000 2000 3000 4000
problem size

Figure 8. Performance of mixed precision, iterative refinement fansyetric, positive definite problems on
CELL Broadband Engine.

our tests the software package called MUMPS [12-14]. Thenmesson for selecting
this software is that it is implemented in both single andtdeyrecision, which is not
the case for other freely available multifrontal solverstsas UMFPACK [15-17].

Using the MUMPS package for solving systems of linear eguatcan be described
in three distinct steps:

1. System Analysis: in this phase the system sparsity streics analyzed in order
to estimate the element fill-in, which provides an estimdtéhe memory that
will be allocated in the following steps. Also, pivoting igfformed based on
the structure ofA 4+ AT, ignoring numerical values. Only integer operations are
performed at this step.

2. Matrix Factorization: in this phase tfeA = LU factorization is performed.
This is the computationally most expensive step of the ays@lution.

3. System Solution: the system is solved in two stéps= PbandUx =y.

Once steps 1 and 2 are performed, each iteration of the redimdoop needs only
to perform the system solution (i.e., step 3). The cost oftdrative refinement steps is
lower than the advantage obtained by performing the systdmtien in single precision
if the number of iterations is limited. The implementatidraanixed precision, iterative
refinement method with the MUMPS package can thus be sumedkaizin algorithm 4.

At the end of each line of the algorithm, we indicate the pieci used to perform
this operation as eithes, for single precision computation, ey, for double precision
computation. Based on backward stability analysis, thetsol x can be considered as
accurate as the double precision one when

b — Axll2 < lIXll2 - [Allfro - € - v/

Algorithm 4 Mixed precision, Iterative Refinement with the MUMPS pacakag
1: system analysis

2. LU« PA (es)
3: solveLy = Pb (es)
4: solveUxg =y (es)
k«1

5. until convergenceo:

6: rg <~ b— Axk—1 (eq)
7: solveLy = Prg (es)
8: solveUz =y (es)
9 Xk ¢« Xk—1+ 2z (€q)

K«—k+1
10: done

where|| - || fro is the Frobenius norm. The iterative method is stopped whembuble
precision accuracy is achieved or a maximum number of iterais reached.

2.2. Experimental Results and Discussion

The method in Algorithm 4 can offer significant improvemefus the solution of a
sparse linear system in many cases if:

1. the number of iterations is not too high.

2. the cost of each iteration is small as compared to the ¢dise system factoriza-
tion. If the cost of each iteration is too high, then a low nemaf iterations will
result in a performance loss with respect to the full doulbexision solver. In
the sparse case, for a fixed matrix size, both the cost of ttersyfactorization
and the cost of the iterative refinement step may substyniey depending on
the number of nonzeroes and the matrix sparsity structure.

The efficiency of the mixed precision, iterative refinemesgr@ach on sparse direct
solvers is shown in Figures 9, 10 and 11. These figures rdp@pdrformance ratio be-
tween the full single precision and full double precisiotvecs (light colored bars) and
the mixed precision and full-double precision solvers kdaolored bars) for six matri-
ces from real world applications. The number on top of eaclsbaws how many itera-
tions are performed by the mixed precision, iterative métiocachieve double precision
accuracy.

The data in Figures 9, 10 and 11 have been measured usingcthiteatures listed
in Table 1 (except for the Cell processor) on a number of edrirom real world ap-
plications. These matrices are reported in Table 3 and angpgd into symmetric and
unsymmetric ones because the MUMPS package uses diffanerdrical methods for
these two classes of matrices.

3. lterative Methods for Solving Sparse Systems

Direct sparse methods suffer from fill-ins and, conseqyghidjh memory requirements
as well as extended execution time. There are various rengdechniques designed to

Intel Woodcrest 3.0 GHz
o5l [ISingle/double |
' Il Vixed prec./double
2t 2 .
3
3 2
o 3
3 1.5t 1
(O]
(O]
o
7]
l_
0.5¢ 1
O_
1 2 3 4 5 6
matrix no.

Figure 9. Mixed precision, iterative refinement with the MUMPS dirsotver on an Intel Woodcrest 3.0 GHz
system.

AMD Opteron 246 2.0 GHz
[1Single/double
2.5¢ I Vixed prec./double|]
I 2 |
2 2 4 2
S 2
S 1.5} 1
(]
Q.
2]
1_
0.5¢ 1
0_
1 2 3 4 5 6
matrix no.

Figure 10. Mixed precision, iterative refinement with the MUMPS dirsotver on an AMD Opteron 246 2.0
GHz system.

minimize the amount of fill-ins. Nevertheless, for problenfisncreasing size, there is a
point where they become prohibitively high and direct spangthods are no longer fea-
sible. Iterative methods are a remedy, since only a few wgrkectors and the primary
data are required [18, 19].

PowerPC 970 2.5 GHz

25l [ISingle/double]
' Il Vixed prec./double
2r 2 1
o
S 1.5} 1
[}
()
o
(7]
1.—
0.51 1
O__
1 2 3 4 5 6
matrix no.

Figure 11. Mixed precision, iterative refinement with the MUMPS direotver on an IBM PowerPC 970 2.5
GHz system.

Table 3. Test matrices for sparse mixed precision, iterative refgm@rsolution methods.

num. Matrix Size Nonzeroes symm. pos.def. Cond. Numb.
1 SiO 33401 1317655 yes no 0(10%)

2 Lin 25600 1766400 yes no O(10P)

3 c-71 76638 859554 yes no 0(10

4 cage-11 39082 559722 no no [O1¢N)

5 raefsky3 21200 1488768 no no 0(10)

6 poisson3Db 85623 2374949 no no O(103)

As an example, let us first consider the iterative refinenteelfj described in Algo-
rithm 1 as

Xi+1 = Xi + M(b — Ax), 1)

whereM is (LU)~1P. Iterative methods of this form (i.e. wheké does not depend on
the iteration numbet) are also known astationary Matrix M can be as simple as a
scalar value (the method then becomes a modified Richartl@tion) or as complex
as(LU)~1P. In either caseM is called apreconditioner It should approximate\—1,
and the quality of the approximation determines the coremeg properties of (1). In
general, a preconditioner is intended to improve the rofasst and the efficiency of the
iterative algorithms. Note that (1) can also be interpreteda Richardson iteration in
solvingM Ax = Mb (calledleft preconditioning). Another possibility, which we will use
in the mixed precision, iterative methods to be describtat,l&s to haveight precondi-
tioning, where the original problerx = b is transformed into a problem of solving

AMu=Db, X= Mu

iteratively. Related to the overall efficiendyl needs to be easy to compute, apply, and
store. Note that these requirements were addressed in xiee priecision methods above
by replacingM (coming from LU factorization ofA followed by matrix inversion), with

its single precision representation so that arithmeticdains can be performed more
efficiently on it. Here, we go two steps further: we considgalacing not onlyM by an
inner loop of incomplete iterative solver performed in $engrecision arithmetic [20] ,
but also the outer loop by more sophisticated iterative ouglie.g., Krylov type).

3.1. Mixed Precision, Inner-Outer lterative Solvers

Note that replacingv by an iterative method leads testingof two iterative methods.
Variations of this type of nesting, also known in the literatas annner-outeriteration,
have been studied, both theoretically and computatiof2lly27]. The general appeal
of these methods is that computational speedup is posski#a the inner solver uses an
approximation of the original matriA that is also faster to apply (e.g., in our case, using
single precision arithmetic). Moreover, even if no fastetrmx-vector product is avail-
able, speedup can often be observed due to improved comeoer¢e.g., see [23], where
Simoncini and Szyld explain the possible benefits of FGMRENBRES over restarted
GMRES).

To illustrate the above concepts, we demonstrate the idéhsawmixed precision,
inner-outer iterative solver that is based on the resta®ederalized Minimal RESid-
ual (GMRES) method. Namely, consider Algorithm 5, wheretfar outer loop we take
the flexible GMRES (FGMRES [19, 22]) and for the inner loop GEIRES in single
precision arithmetic (denoted by GMRES. FGMRES, a minor modification to the
standard GMRES, is meant to accommodate non-constantnaitiomers. Note that in
our case, this non-constant preconditioner is GMRESThe resulting method is de-
noted by FGMRES{ut)-GMRESs p(min) wherem;y, is the restart for the inner loop
andmgy; for the outer FGMRES.

The potential benefits of FGMRES compared to GMRES are bewplmetter un-
derstood [23]. Numerical experiments confirm cases of iwgments in speed, robust-
ness, and sometimes memory requirements for these metfmdsxample, we show a
maximum speedup of close to 15 on the selected test problEmesmemory require-
ments for the method are the matixin CRS format, the nonzero matrix coefficients
in single precision, Znyyt Number of vectors in double precision, amg, number of
vectors in single precision.

The Generalized Conjugate Residuals (GCR) method [26,s28}iparable to the
FGMRES and can replace it successfully as the outer iterativer.

3.2. Numerical Performance

Similar to the case of sparse direct solvers, we demongtrateumerical performance
of Algorithm 5 on the architectures from Table 1 and on therioas from Table 3.

Figure 12 shows the performance ratio of the mixed precjgmer-outer FGMRES-
GMRESsp vs. the full, double precision, inner-outer FGMRES-GMRES i.e., here
we compare two inner-outer algorithms that do the same, thélonly difference being
that their inner loop’s incomplete solvers are performedarrespondingly single and
double precision arithmetic.

Algorithm 5 Mixed precision, inner-outer FGMRES(yt)-GMRESs p(mip)
1. fori =0,1,...do
2. r=b— Ax

3 p=hio=|Irll2

4. check convergence and exit if done

5. fork=1, ..., mgydo

6: vk =T/ hgk-1

7: One cycle of GMRE§p(min) in solving Az« = vy, initial guesszxy = 0
8: r=Az

9: for j=1,... kdo

10: hj’kerl)j

11 r=r —hjkoj

12: end for

13: hkrik = Irll2

14: if 41,k is small enouglthen break

15: end for

16: /I Define Zy = z1,...,2, Hk = {hij}i<i<k+1,1<j<k

17. Find Wk = w1, ..., wx' that minimizes||b — A + Zx Wk)||2

18: /I note: or equivalently, findi that minimizeq|fe; — Hkx Wk||2
190 X1 = Xi + Zk Wk

20: end for
GMRES SP-DP/DP-DP
T T T T T
2| I Intel Woodcrest — 8
[AMD Opteron 246
1.8+ [11BM PowerPC 970 —
1.6 - B]
1.4} N -]
a _
S 12}]
8 —
o 1
o
(2]
0.8}]
0.6]
0.4F]
0.2}]
0
1 2 3 4 5 6
matrix no.

Figure 12. Mixed precision, iterative refinement with FGMRES-GMR&S from Algorithm 5 vs. DP
FGMRES-GMREg p.

Figure 13 shows the performance ratio of the mixed precj&orer-outer FGMRES-
GMRESsp vs. double precision GMRES. This is an experiment that showsitimar-
outer type iterative methods may be very competitive coegbaw their original counter-

GMRES SP-DP/DP

- Intel Wooc;crest ‘ [] |
[AMD Opteron 246
[11BM PowerPC 970

15

10

speedup

jli l:Ili I
. N

1 2 3 4 5 6
matrix no.

Figure 13. Mixed precision, iterative refinement with FGMRES-GMR&Sfrom Algorithm 5vsfull double
precision FGMRES-GMRESp .

parts. For example, we observe a speedup for matrix #4 of Wp tehich is mostly due
to an improved convergence of the inner-outer GMRESMRES (e.g., about.86 of
the 15-fold speedup for matrix # 4 on the IBM PowerPC architiexis due to improved
convergence). The portion of the 15-fold speedup that isekatusively to singlevs.
double precision arithmetic can be seen in Figure 12 (ab&ut the IBM PowerPC).

References

[1] G. W. Stewart.Introduction to Matrix ComputationsAcademic Press, 1973.

[2] J. W. Demmel. Applied Numerical Linear AlgebraSIAM, 1997.

[3] J. H. Wilkinson.Rounding Errors in Algebraic Processd&3rentice-Hall, 1963.

[4] C. B. Moler. Iterative refinement in floating point. ACM 14(2):316-321, 1967.

[5] N. J. Higham.Accuracy and Stability of Numerical AlgorithmSIAM, 1996.

[6] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttanil J. J. Dongarraa. Ex-
ploiting the performance of 32 bit floating point arithmeticobtaining 64 bit ac-
curacy. InProceedings of the 2006 ACM/IEEE Conference on Supercangput
2006.

[7] J. Kurzak and J. J. Dongarra. Implementation of mixedisien in solving systems
of linear equations on the CELL process@oncurrency Computat. Pract. Exper.
to appear.

[8] J. Kurzak and J. J. Dongarra. Mixed precision dense tisgatem solver based
on cholesky factorization for the CELL process@oncurrency Computat. Pract.
Exper.in preparation.

[9] lain S. Duff and John K. Reid. The multifrontal solutiohindefinite sparse sym-
metric linear equations. 9(3):302-325, September 1983.

[10] Cleve Ashcraft, R. Grimes, J. Lewis, Barry W. Peytong &forst Simon. Progress
in sparse matrix methods in large sparse linear systemsaion&ipercomputers.
Intern. J. of Supercomputer Applicatiqris10-30, 1987.

[11] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Piotrskzazek, and Stanmire To-
mov. Computations to enhance the performance while actgethie 64-bit accu-
racy. Technical Report UT-CS-06-584, University of TerssesKnoxville, Novem-
ber 2006. LAPACK Working Note 180.

[12] Patrick R. Amestoy, lain S. Duff, and J.-Y. LExcellentultifrontal parallel dis-
tributed symmetric and unsymmetric solve@omput. Methods Appl. Mech. Eng.
184:501-520, 2000.

[13] Patrick R. Amestoy, lain S. Duff, J.-Y. L'Excellent, dnJacko Koster. A fully
asynchronous multifrontal solver using distributed dyi@scheduling. 23:15-41,
2001.

[14] Patrick R. Amestoy, A. Guermouche, J.-Y. LUExcelleatyd S. Pralet. Hybrid
scheduling for the parallel solution of linear systeniarallel Comput, 32:136—
156, 2006.

[15] Timothy A. Davis lain S. Duff. An unsymmetric-patternuftifrontal method for
sparse LU factorization. 18:140-158, 1997.

[16] Timothy A. Davis. A combined unifrontal/multifrontahethod for unsymmetric
sparse matrices. 25:1-19, 1999.

[17] Timothy A. Davis. A column pre-ordering strategy foretlinsymmetric-pattern
multifrontal method. 30:196—-199, 2004.

[18] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donakack Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. V. der Vorstemplates for the Solution of
Linear Systems: Building Blocks for Iterative Method®hiladalphia: Society for
Industrial and Applied Mathematics., 1994. Also availabk postscript file at
http://www.netlib.org/templates/Templates.html.

[19] Y. Saad. Iterative Methods for Sparse Linear SystenSociety for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2003.

[20] Kathryn Turner and Homer F. Walker. Efficient high acey solutions with gm-
res(m).SIAM J. Sci. Stat. Compuil3(3):815-825, 1992.

[21] Gene H. Golub and Qiang Ye. Inexact preconditioned wgaie gradient method
with inner-outer iteration. SIAM Journal on Scientific Computing1(4):1305—
1320, 2000.

[22] Y. Saad. A flexible inner-outer preconditioned GMRE§althm. Technical Re-
port 91-279, Department of Computer Science and Eginegdniyersity of Min-
nesota, Minneapolis, Minnesota, 1991.

[23] Valeria Simoncini and Daniel B. Szyld. Flexible innewter Krylov subspace meth-
ods. SIAM J. Numer. Anal40(6):2219-2239, 2002.

[24] O. Axelsson and P. S. Vassilevski. A black box geneeglizonjugate gradient
solver with inner iterations and variable-step preconditig. SIAM J. Matrix Anal.
Appl, 12(4):625-644, 1991.

[25] VY. Notay. Flexible conjugate gradientsSIAM Journal on Scientic Computing
22:1444-1460, 2000.

[26] C. Vuik. New insights in gmres-like methods with vari@kpreconditioners.J.
Comput. Appl. Math.61(2):189-204, 1995.

[27] J. van den Eshof, G. L. G. Sleijpen, and M .B. van GijzerelaRation strategies
for nested Krylov methods. Technical Report TR/PA/03/2EREACS, Toulouse,
France, 2003.

[28] H. A. van der Vorst and C. Vuik. GMRESR: a family of nes@MRES methods.
Numerical Linear Algebra with Application(4):369-386, 1994.

