Open MPI: A High-Performance, Heterogeneous MPI

Richard L. Graham !, Galen M. Shipman !, Brian W. Barrett 2,
Ralph H. Castain !, George Bosilca 3, and Andrew Lumsdaine >

'Los Alamos National Laboratory
Advanced Computing Laboratory

Los Alamos, NM USA

?Indiana University
Open Systems Laboratory
Bloomington, IN USA

{rgraham, gshipman, rhc} @lanl.gov {brbarret, lums} @osl.iu.edu

3University of Tennessee
Dept. of Computer Science
Knoxville, TN USA
{bosilca} @cs.utk.edu

Abstract

The growth in the number of generally available, dis-
tributed, heterogeneous computing systems places increas-
ing importance on the development of user-friendly tools
that enable application developers to efficiently use these
resources. Open MPI provides support for several aspects
of heterogeneity within a single, open-source MPI imple-
mentation. Through careful abstractions, heterogeneous
support maintains efficient use of uniform computational
platforms. We describe Open MPI’s architecture for het-
erogeneous network and processor support. A key design
features of this implementation is the transparency to the
application developer while maintaining very high levels of
performance. This is demonstrated with the results of sev-
eral numerical experiments.

1. Introduction

While heterogeneous, distributed computing has been
around for quite some time, much of the focus has been on
resolving functional concerns at the subsystem level (e.g.,
cross-domain authentication and task scheduling). The us-
ability and application-level performance of the resulting
environment, however, are system-level issues and have
generally received less attention. The Open MPI project
is aimed at providing this system-level integration, with the
overall goal of addressing both of these issues.

The concept of heterogeneous computing has taken on a
number of meanings over the years. For clarity, Open MPI

1-4244-0328-6/06/$20.00 (©)2006 IEEE.

defines a job as the execution of either a single application,
or multiple communicating applications, each potentially
on a separate computing system. Within that context, the
project generally breaks the definition of heterogeneity into
four broad categories:

Processor heterogeneity Dealing with differences in
processor speed, internal architecture (e.g., multi-
core), and communication issues caused by the transfer
of data between processors with different data repre-
sentations (different endian, floating point representa-
tion, etc.).

Network heterogeneity Using different network proto-
cols between processes in a job. This includes multiple
network protocols between two processes and different
network protocol to different processes in the job.

Run-Time Environment heterogeneity Executing a job
across multiple resources (e.g., multiple clusters) that
are locally administered by possibly different schedul-
ing systems, authentication realms, etc.

Binary heterogeneity Coordinating execution of different
binaries, either through the coupling of different appli-
cations or as part of a complex single application.

While all of these issues are being addressed within the
Open MPI system, this paper will focus primarily on deal-
ing with processor and network heterogeneity. The num-
ber of potential combinations facing the application devel-
oper for processor and network interfaces poses a signif-

icant challenge when attempting to build or use a high-
performance application. One of the guiding principles in
the Open MPI project is to decompose the data exchange
and manipulation interfaces in such a way as to hide details
from both the application developer and the end user while
providing effective and portable application performance.
At the same time, those users that want to have very fine
control over resource utilization may do so with some extra
effort. The design goals of the project fall into two areas
that reflect this philosophy:

Transparency Differences in the local environment for the
application’s processes shall be transparent to the ap-
plication. The Open MPI library will detect the lo-
cal environment during initialization of each process,
determine the appropriate configuration for maximum
performance, and configure the local library appropri-
ately. Differences in the environment can arise from
two sources:

e Operation across multiple clusters, grids, or au-
tonomous computers. Open MPI introduces the
concept of a cell — i.e., a collection of nodes
within a common environment — to commonly
refer to clusters, grids, and other forms of col-
lective computing resources. Multi-cell oper-
ations requires the careful apportioning of the
application to each cell, and the coordination
of launch operations and subsequent wire-up of
the MPI communication system. The prob-
lem of automatically apportioning an application
across heterogeneous cells is beyond Open MPI’s
scope — however, once apportioned, Open MPI
will launch and execute the application with no
further guidance.

e Variations in the configuration of nodes within a
single cluster or grid — this includes differences in
the amount of available memory, operating sys-
tem, available network interfaces, and processor
architecture.

Performance Optimal communications performance is a
design goal. Heterogeneous support should not im-
pact performance of connections between processes
running in a homogeneous environment. This man-
dates the handling of heterogeneous processors at the
connection level, rather than mandating a global wire
protocol.

This paper will describe the Open MPI collaboration’s
approach to meeting these goals, and quantify the overall
performance of the system. Following a brief review of re-
lated work, we present an overview of Open MPI’s design

with a focus on dealing with processor and network het-
erogeneity — this will include a detailed description of how
the system automatically detects the local environment and
configures itself for optimized performance. Finally, the
performance of the system in several illustrative scenarios
is presented.

2. Related Work

As heterogeneous computing provides an opportunity to
maximize available computing resources, there has been
a fair amount of work done on inter-process communica-
tions processes in MPI applications. Many current produc-
tion MPI implementations (e.g., LAM/MPI [4], FT-MPI [7],
MPICH-G2 [11], StaMPI [10], and PACX-MPI [12]) sup-
port the operation of applications within such an environ-
ment. Since the Open MPI collaboration involves the de-
velopers of several of the more popular implementations,
the project has built upon that prior experience to provide
an enhanced capability in this area.

The HeteroMPI [13] project provides extensions to the
MPI standard for heterogeneous computing. Library assis-
tance is provided to assist in decomposing the problem to
best fit the available resources. HeteroMPI still relies on
an underlying MPI implementation for process startup and
high-performance communication. Our current research in
Open MPI seeks to provide the greatest flexibility and per-
formance in precisely the areas where HeteroMPI depends
on an underlying MPI implementation for functionality.

Much less work has been done in the area of network het-
erogeneity, particularly with respect to the optimized use of
multi-network interfaces within messages. LA-MPI [9], for
example, supports multi-network communications, but with
the restriction that any individual message be sent with a
single messaging protocol. Similarly, MPICH-VMI2 [15]
implements MPI communications over the Grid using a
high performance protocol within a cluster, and TCP/IP
communications between clusters, but does not support the
simultaneous use of multiple network interfaces on a single
node.

The Open MPI collaboration seeks to extract the best of
these experiences and combine them into a single imple-
mentation focused on providing performance in a manner
that is both transparent to the user and yet fully configurable
when desired. The resulting architecture is described in the
following section.

3. Open MPI Design

The Open MPI project is a broad-based collaboration
of U.S. national laboratories with industry and universities
from both Europe and the United States. It aims to provid-

ing a high performance, robust, parallel execution environ-
ment for a wide variety of computing environments, includ-
ing small clusters, peta-scale computers, and distributed,
grid-like, environments. From a communications point-
of-view, Open MPI has two functional units: the Open
Run-Time Environment (OpenRTE) [5, 6], responsible for
bootstrapping operations; and the Open MPI [8] communi-
cations library, providing highly efficient communications
support, tailored to specific communications context. These
two units work together to support transparent execution of
applications in a heterogeneous environment.

3.1. Bootstrapping Start-up

OpenRTE provides transparent, scalable support for
high-performance applications in heterogeneous environ-
ments. OpenRTE originated within the Open MPI project
but has since spun-off into its own effort, though the two
projects remain closely coordinated. The ability of Open
MPI to transparently operate in heterogeneous environ-
ments is largely due to the support services provided by
OpenRTE, so it is useful to understand the OpenRTE ar-
chitecture.

The OpenRTE system is comprised of four major func-
tional groups:

General Purpose Registry (GPR) A centralized pub-
lish/subscribe data repository used to store admin-
istrative information (e.g., communication contact
information and process state) supporting OpenRTE
and Open MPI operations. The GPR is also available
for use by applications to synchronize their internal
operations, though it is not intended for the storage or
communication of general application data.

Resource Management (RM) group A collection of four
subsystems supporting the identification and allocation
of resources to an application, mapping of processes to
specific nodes, and launch of processes.

Support Services A suite of subsystems that provide gen-
eral support for OpenRTE operations, including ser-
vices to generate unique process names, 1/O forward-
ing between application processes and the user, and
OpenRTE’s communication subsystem. The Open-
RTE communication subsystem utilizes a well defined
wire protocol with data being packed in network byte
order — this ensures accurate communication during
the start-up process when processor architecture of
the individual elements within the system remains un-
known. OpenRTE provides support for sized integer
data types, generic integer data types (e.g., size_t,
bool, and pid_t), as well as a means for users to
define their own (possibly structured) data types.

Error Management (EM) group Several subsystems that
collectively monitor the state of processes within an
application and respond to changes in those states that
indicate errors have occurred.

Implementation of each of these groups and Open MPI
itself is based upon the Modular Component Architecture
(MCA) [16], used within both OpenRTE and Open MPIL.
Within this architecture, each of the major subsystems is
defined as an MCA framework with a well-defined Appli-
cation Programming Interface (API). In turn, each frame-
work contains one or more components, each representing
a different implementation of that particular framework that
includes support for the entire API. Thus, the behavior of
any OpenRTE or Open MPI subsystem can be altered by
defining another component within a given framework and
requesting that it be selected for use.

Alternatively, the user can allow the system to dynami-
cally sense its environment and automatically select the best
components for that situation. Open MPI uses this capa-
bility, for example, to identify the available network inter-
faces on each node and select a strategy for both maximiz-
ing throughput and minimizing latency. Similarly, Open-
RTE depends upon the dynamic component selection prop-
erties within the MCA to identify the necessary interfaces
for launching a process, allocating resources, etc.

Open MPT’s use of the component architecture to boot-
strap the start-up of an MPI application in heterogeneous
environments can best be illustrated by considering the
launch of such an application on a single cell. Once the user
enters the mpirun command, OpenRTE begins the launch
process by starting a head node process (HNP) on the cell.
A head node is a node within a cell from which processes
can be launched — typically the front end machine of a clus-
ter, or a grid controller. The head node on most cells is also
where the user will have logged in to execute the mpirun
command. The HNP serves as the local coordinator for
all OpenRTE activities for this user on the cell, including
launch and monitoring of processes, routing of messages
to/from processes on the cell to those on another cell, etc.

As the HNP starts, it allows each OpenRTE framework
to sense the local environment to determine the type of cell
upon which it is launching — e.g., the local resource manager
(SLURM, BProc, etc.), operating system, and any resource
allocations that may already exist for this user. Appropri-
ate components for each framework are selected depending
upon either the user’s specification or the individual com-
ponent’s judgment that it can best handle the given environ-
ment. Once the appropriate components have been selected,
the HNP proceeds to launch the processes on the individual
nodes within the cell.

Similarly, each application process as it starts executing
on a node first passes through the identical framework se-
lection mechanism to identify its appropriate configuration.

This configuration information is made available to all other
processes in the job by sending it to the GPR for storage.
As these processes are not on the head node, many of the
frameworks will select proxy components that do little
more than relay commands and responses to/from the HNP.
For example, requests to dynamically spawn additional pro-
cesses are passed to the HNP for execution, as are requests
to store or retrieve data from the GPR.

During the start-up procedure, each process reports items
such as its location, contact information for all available
network transports on their local node, and node architec-
ture into the GPR via their connection to the HNP, and sub-
scribes to the contact information from all other processes
in the application. This subscription serves two purposes:

e When all processes reach a pre-defined barrier within
MPLINIT, the subscriptions are used by OpenRTE to
identify the information that is to be sent back to the re-
questing processes. Such information includes contact
information and an architecture description, required
for establishing MPI communication.

e Upon change of any process’ contact information (e.g.,
when a process fails and must be restarted), all pro-
cesses holding a subscription on that data are automat-
ically notified with the updated information. This al-
lows Open MPI to transparently maintain connectivity
throughout the application’s lifetime.

Thus, OpenRTE provides a bootstrap capability for both
initially communicating process contact information, and
for establishing a transparent mechanism for communica-
tion information updates. Open MPI takes advantage of this
mechanism to share information on the availability of high-
speed network interfaces, processor architecture, and other
configuration parameters to provide a high-performance
message passing environment.

3.2. Open MPI Multiple Network Support

As with OpenRTE, the MPI layer utilizes the MCA sys-
tem to adapt to the system architectures used by an applica-
tion. Presently, Open MPI supports MPI communication
over a wide variety of communication protocols, includ-
ing shared memory, InfiniBand [2] (mVAPI and OpenlB),
Myrinet [14] (GM and MX), TCP/IP, and Portals [3]. These
components provide highly optimized and scalable inter-
connect support and also provide a number of run time pa-
rameters which allow for easy tuning for a specific oper-
ating environment or application. Open MPI supports two
forms of network heterogeneity — it can stripe a single mes-
sage to a single destination over multiple networks (of either
the same or different communication protocols) and it can
communicate to different peers using different communica-
tion protocols.

The following section will describe the point-to-point ar-
chitecture of Open MPI, and how this is used to achieve a
high performance communication architecture, even in het-
erogeneous network environments.

3.2.1. Point-to-Point Design

Open MPI provides point-to-point message transfer facili-
ties via multiple MCA frameworks. These frameworks and
the overall point-to-point architecture is illustrated in Fig-
ure 1.

MPI
PML
BML
—
OpenlB OpenlB SM
BTL BTL BTL
Open 1B Open 1B S
MPool MPool MPool
Rcache Rcache
e

Figure 1. Open MPI point-to-point communi-
cation framework

The point-to-point architecture consists of four main lay-
ers: the Byte Transport Layer (BTL), BTL Management
Layer (BML), Point-to-Point Messaging Layer (PML) and
the MPI layer. Two additional frameworks are shown,
the Memory Pool (MPool) and the Registration Cache
(Rcache).

MPool Many RDMA based interconnects require mem-
ory to be registered with the interconnect prior to
any send/receive or RDMA operation which uses the
memory as the target or source. Registration and de-
registration services are provided by the MPool frame-
work which allows other components to use these ser-
vices. Both PML and BTL components use the MPool
in addition to the MPI level where MPI_ALLOC_MEM
uses the services of the MPool.

Rcache Registration of memory can be a high cost opera-
tion. In fact, the “bandwidth” of memory registration
is often less than the bandwidth of the interconnect and
may therefore prevent a bottleneck to otherwise high
performance. With this in mind, the registration cache
provides facilities for caching and later searching for
registrations. This allows the high cost of memory
registration to be effectively amortized over multiple
RDMA operations. Several of the MPool components
use the facilities of the Rcache to allow registrations

to be reused over potentially multiple RDMA opera-
tions.

BTL The BTL framework provides a uniform method
of data transfer for numerous interconnects, both
send/receive and RDMA based. The BTL components
are MPI agnostic acting as simple byte movers with fa-
cilities for both local and remote completion as appro-
priate to the underlying interconnect. Local comple-
tion facilities are provided by a simple callback mech-
anism for each fragment scheduled on the BTL. Re-
mote completion is accomplished via an Active Mes-
sage [17] style facility where Active Message call-
backs are registered along with an Active Message Tag
(AM-Tag) value during BTL initialization. Fragments
scheduled on the BTL include an AM-Tag value which
provides remote completion callback.

BML In order to allow multiple components to use the BTL
components, the BML provides a facilities for BTL ini-
tialization and resource discovery (via the BTL). Af-
ter BTL initialization the BML layer is effectively by-
passed via inline functions to the BTL.

PML As the BTL components provide simple byte trans-
fer services, higher level MPI point-to-point seman-
tics are implemented by the PML. Message schedul-
ing and progression is located in the PML as well as
MPI specific protocols such as short and long mes-
sage protocols. This isolation of higher level seman-
tics allows the BTL components to be fairly simple
and lightweight which allows easier adoption of new
interconnect technologies. This structure also allows
for fine grain scheduling of messages across multiple
interconnects as well as the ability to change schedul-
ing policies based on interconnect properties. There
are currently two PML components under active de-
velopment OB1, a high performance PML optimized
for reliable interconnects and DR a network fault tol-
erant PML providing adaptable performance based on
the overall reliability of the underlying interconnect(s).

3.3. Resource Discovery and Initialization

During start-up, a PML component is selected and ini-
tialized. The PML component selected defaults to OB1 but
may be overridden by a run-time parameter/environment
setting. The OB1 PML component then opens the BML
component R2. R2 then opens and initializes all available
BTL modules.

During BTL initialization local resources are discovered
this may include:

1. Opening Devices

2. Checking for active status
3. Creating a module for each active device
4. publish addressing information to the GPR

After local resource discovery Open MPI initialization
begins peer resource discovery. Peer information is queried
from the GPR and this information is passed to the PML
level. The PML then directs the BML and finally the BTL
to parse the peer information. Each BTL is passed the peer
information along with a reachability mask. The BTL will
then attempt to match the local resource to one of the peer’s
published resources. If a match is made an endpoint is
created representing a connection to the peer process.

This infrastructure provides a uniform method of local
and remote resource discovery and resource matching. No
assumption is made regarding the symmetry of peer re-
sources thereby allowing peers within a single job to have
different network interconnects so long as some connection
exists between each set of peers that will communicate in
the job. This infrastructure allows for heterogeneous net-
working interconnects within a cluster.

3.4. Message Scheduling

To effectively utilize multiple network interconnects
Open MPI provides a mechanism to schedule a single mes-
sage across these network resources. This mechanism is
currently isolated at the BTL and BML levels in such a
way as to allow other components to implement an effec-
tive scheduling policy. The BML also provides a simple
round robin scheduling policy which other component may
use as appropriate. For point-to-point communication the
PML uses both round robin and custom scheduling based
on a variety of factors.

Interconnects may exhibit widely different performance
characteristics which a scheduling policy should take into
account. These performance characteristics are exported by
each BTL and include both bandwidth and latency. Dur-
ing BTL initialization the BML prioritizes each BTL based
on these characteristics allowing upper level components
such as OB1 to choose the appropriate interconnect(s) to
communicate with a peer. In addition to performance char-
acteristics, the BML groups interconnects based on capa-
bilities such as send/receive and RDMA. These groupings
are cached on a data structure associated with each peer for
efficient access. These groupings include Eager (Low La-
tency), Send/Receive and RDMA capable BTLs.

When scheduling a message OB1 will eagerly send a
specified amount of data choosing a BTL for the peer from
the Eager list created by the BML. The amount of data
scheduled is BTL specific allowing resource usage and per-
formance to be balanced on a per BTL basis. Further mes-
sage fragments may be delivered using Send/Receive based

BTLs where each fragment size is determined by the max-
imum send size of the BTL and the number of fragments
allocated to the BTL is determined by a weighting factor
based on BTL bandwidth. The round robin facilities pro-
vided by the BML are used to choose the next BTL on which
to schedule a fragment. Fragments may also be scheduled
using RDMA BTLs in a similar manner.

3.5. Open MPI Derived Datatype Engine

Processor heterogeneity within the MPI layer is han-
dled by the Derived Datatype Engine (DDT), which imple-
ments MPI datatype conversion for Open MPI. The DDT
engine consists of two parts — the MPI datatype interface
and a datatype convertor. The convertor handles packing
and unpacking messages for transmission, although conver-
tor packing and unpacking does not always require copying
into a separate buffer. A number of packing and unpack-
ing algorithms are available, with selection of the optimal
algorithm selected for each message transmission.

During MPLINIT, each process determines the local ar-
chitecture and creates an architecture description, a 32-bit
long bitmask that can be shared among processes. Once
computed, the local value is published to the OpenRTE
GPR and shared across all processes in the current job, as
described in Section 3.1. The architecture description of all
peers with which a given process can communicate is read-
ily accessible to the PML/BML and datatype engine. The
architecture bitmask includes the information described in
Table 1, which encompasses the heterogeneity issues en-
countered on platforms supported by Open MPI. The size
of types is computed at compile time, using the sizeof ()
operator in C. The floating point description is determined
by the information provided in the f1oat .h header file,
and the endian representation and mantissa representation
are determined at run time.

The BML and datatype engine use this architecture value
(which is a 32 bit integer and therefore easily and quickly
comparable) to determine whether the heterogeneous code
is needed. The BML level automatically disables RDMA
communication between endpoints with different architec-
tures, meaning that communication layers building on the
BML/BTL design are generally not aware of processor het-
erogeneity. One exception is the use of component-specific
headers, which are converted to network byte order if differ-
ent the peers have different endian representations. Both the
MPI point-to-point and one-sided communication compo-
nents are able to build on the BML/BTL design and provide
heterogeneous support with little extra work.

Presently, only send/receive semantics are used for com-
munication between processes of different architecture. The
BTL receive semantics require a copy of the buffer from
BTL memory to user memory. Therefore, a receiver-makes-

Byte | Bits | Description

1-2 | Always 00, allowing recognition of
endian encoding

3 -4 | endian: 00 = little, 01 = big

5-6 | reserved: Always 00

7 -8 | reserved: Always 00
1-2
3-4

length of long: 00 =32,01 = 64
reserved for length of long long: Al-
ways 00

5-6 | length of C/C++ bool: 00 =8, 01 =
16,10 =32

7 - 8 | length of Fortran LOGICAL: 00 =8,
01=16,10=32

1-2 | length of long double: 00 = 64, 01 =
96,10=128

3 -4 | number of bits in the exponent of a
long double: 00 =01, 01 = 14

5-7 | number of bits of mantissa in a long
double: 000 = 53, 001 = 64, 010 =
105, 011 = 106, 100 = 107,101 =
113

8 Intel or SPARC representation of
mantissa: 0 = SPARC, 1 = Intel
1-2 | Always 11, allowing recognition of
endian encoding

3-4 | reserved: Always 11

5-6 | reserved: Always 11

7 -8 | reserved: Always 11

Table 1. Information contained in 32-bit archi-
tecture string. Lengths are given in bits.

right approach is taken and the unpack routines handle all
details of the heterogeneous datatype support. This includes
endian correction, floating point format conversion for long
doubles, and support for different boolean formats (both
Fortran LOGICAL and C++ bool). Conversion between
datatypes of different sizes (such as a 64 bit MPI_LONG to
a 32 bit MPI_LONG) is not presently supported, although it
is planned for a future release.

4. Results

This section presents performance data for several nu-
merical experiments. They include performance data on
network and processor heterogeneity.

4.1. Network Heterogeneity

4.1.1. Experimental Setup

Network heterogeneity benchmarks were performed on a 4
node partition of a 256 node cluster consisting of dual In-
tel Xeon X86-64 3.4 GHz processors with a minimum 6GB
of RAM, Mellanox PCI-Express Lion Cub adapters con-
nected via a Voltair 9288 switch, Myrinet PCI-X LANai
10.0 adapters connected via a Myrinet 2000 switch. The
operating system is Red Hat Enterprise Linux 4, kernel ver-
sion 2.6.9-11. Tests were run with Open MPI pre-release
1.1.1.

4.1.2. Results

The ability to stripe a single message across multiple inter-
connects can provide enhanced performance depending on
the message size and communication pattern. As show in
Figure 2, when multiple interconnects are used for medium
and large message sizes there is an additive effect on total
bandwidth. For smaller messages the lower latency of the
Mellanox adapter (when compared to a much older Myrinet
adapter using GM) results in increased latency when frag-
ments are striped on both interconnects. For medium size
messages, striping the data across the two very different in-
terconnects actually reduces the bandwidth, relative to send-
ing the data only over the InfiniBand interconnect, again due
to latency differences. Changes to the simplistic schedul-
ing policy can remedy the negative performance impact for
both small and medium sized messages, but this will be in-
vestigated methodically in a future publication. For large
messages, the current scheduling algorithm is sufficient to
produce a near additive increase in the observed bandwidth,
when using both the Myrinet and the InfiniBand intercon-
nects, as the time on wire dominates the overall data trans-
mission time.

The effect of the multi-nic scheduling on a user appli-
cation is briefly explored using a visualization application.
For applications which use larger message sizes multi-nic
scheduling can provide significant improvements. Table 2
demonstrates the performance impact of multi-nic schedul-
ing on a visualization display benchmark (ParaView [1]
simulation). While the Mellanox interconnect provides
good performance compared to the older Myrinet intercon-
nect combining the two interconnects provides a marked
improvement over the single nic case.

4.2. Processor Heterogeneity

4.2.1. Experimental Setup

Processor heterogeneity experiments were run on two clus-
ters, one Power PC and one Opteron, both connected to the

1000

GM+MVAP] ——
900 k' MVAPI ----—-- |
GM -~

. 800 - |
[&)
3 [
B 700 P |
2
& 600 - |
©
g 7 .
g 500
g 400 - |
]
S 300 | |
& y I

200 |

100 | |

0 L sttt |)
1 10 100 1000 10000 100000 1e+06 1e+07

Message Size (Bytes)

Figure 2. Impact of network heterogeneity on
point-to-point bandwidth. Message buffers
are allocated via MPI_ALLOC_MEM

Interconnect Total Time
Myrinet GM Only 24.92 (sec)
Mellanox MVAPI Only 8.53 (sec)
Myrinet GM + Mellanox MVAPI 6.55 (sec)

Table 2. 4 Node (single process per node)
Visualization Display Benchmark (Paraview
simulation)

same gigabit Ethernet switch. The Power PC cluster con-
sists of 16 dual 2.3 GHz Apple G5 (IBM Power PC 970)
machines with 4GB of memory per node. The operating
system is Mac OS X 10.4.6. The Opteron cluster consists
of 128 dual 2.0 GHz AMD Opteron machines with 4GB of
memory per node. The operating system is Red Hat Enter-
prise Linux 4, kernel version 2.6.9-34.ELsmp. Open MPI
1.1.1 pre-release was used for the experiments.

4.2.2. Results

Figure 3 demonstrates the impact of endian conversion
on bandwidth, using a modified version of NetPIPE to
send data as a series of MPI_INTs instead of MPI_BYTEs.
MPI_BYTE requires no datatype conversion (indeed, that
is the point of MPI_BYTE as an MPI datatype), so there is
no penalty for sending a series of MPI_BYTEs in a hetero-
geneous environment. By using MPI_INTs, datatype con-
version is required for heterogeneous data transfer. In the
test platform used, the heterogeneous cases requires all data
to have it’s endianness adjusted by the receiver. As can be
seen, there is a small performance hit for performing en-

dian conversion, approximately a 5 megabit / second drop
in bandwidth for very large messages.

900 T T T

Opteron Linux TCP ———
800 |- Power PC Mac OS X TCP -------
Heterogeneous TCP --------

700
600
500
400

300

Bandwidth (Megabits/sec)

200

100 -

0 ! ;"'/;:/\ 1 1 1
1 10 100 1000 10000 100000 1e+06 1e+07

Message Size (Bytes)

Figure 3. Impact of processor heterogeneity
on point-to-point bandwidth.

Figure 4 shows the performance of Open MPI running
the IMB Reduce benchmark at 16 nodes. Similar to the Net-
PIPE results, comparisons are given against homogeneous
systems. The heterogeneous tests were run with two differ-
ent layouts. In one, ranks 0 - 7 were on Opteron processors
and ranks 8 - 15 on Power PC processors (block ordering).
In the other, even ranks were on Opteron processors and odd
ranks on Power PC processors (round-robin ordering). As
can be seen in the results, the allocation mechanism does
play a factor in performance. On applications that perform
communication within groups, this performance hit can be
even more noticeable. As expected, the reduction perfor-
mance for small messages is correlated to the small mes-
sage latency performance of the nodes in use. For larger
messages, performance of the heterogeneous runs is worse
than the homogeneous runs, due to the overhead of the extra
memory manipulation to “fix up” endian differences.

4.3. Summary

Open MPI is capable of effectively utilizing multiple
communication channels between a single pair or peers.
This can lead to improved application performance, as seen
with the ParaView application. There is little to no cost to
the end use for supporting network heterogeneity. Proces-
sor heterogeneity, on the other hand, comes at a cost, which
can be significant for medium sized messages. The overall
impact of this cost is somewhat limited by only perform-
ing datatype conversion when absolutely needed (on a peer
basis), but is unavoidable in some cases.

1e+07 T T T
Opteron Linux
Power PC Mac OS X -------
10406 | Heterogeneous, Block ordering -------- <

Heterogeneous, Round-robin ordering

100000

10000

1000

Reduce time (microseconds)

100

10 | | | | | |
1 10 100 1000 10000 100000 1e+06 1e+07

Message Size (Bytes)

Figure 4. Impact of processor heterogeneity
on MPI_REDUCE performance.

5. Conclusions

Open MPI provides a high performance platform for par-
allel applications on both homogeneous and heterogeneous
platforms. The application developer is not unduly bur-
dened by the cost of heterogeneous application develop-
ment as Open MPI transparently handles process start-up,
communication, and data conversion. Open MPI also deter-
mines all architecture and networking properties on a per-
peer basis, and selects the most efficient mode of commu-
nication with the given peer, in order to maximize perfor-
mance. As seen in Section 4, our design to support multi-
ple, disparate networks can offer a performance increase in
some situations. The cost for different endianess support, is
also incured, only when needes. Further, the architecture al-
lows us to continue research into efficient and user-friendly
support for heterogeneous computing, as well as areas such
as network fail-over and recovery, without drastic modifica-
tion to the device-specific code.

6. Acknowledgments

Project support was provided through the United States
Department of Energy, National Nuclear Security Adminis-
tration’s ASCI/PSE program and the Los Alamos Computer
Science Institute; a grant from the Lilly Endowment and
National Science Foundation grants NSF-0116050, EIA-
0202048 and ANI-0330620; and the Center for Informa-
tion Technology Research (CITR) of the University of Ten-
nessee.

Los Alamos National Laboratory is operated by the Uni-
versity of California for the National Nuclear Security Ad-
ministration of the United States Department of Energy un-

der contract W-7405-ENG-36.

The authors would like to thank all those who also con-
tributed to development of Open MPI, particularly Tim
Woodall (formerly of Los Alamos National Laboratory, cur-
rently at NetQoS). LA-UR-06-3453.

References

(1]
(2]
(3]
(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

J. Ahrens, B. Geveci, and C. Law. ParaView: An End User
Tool for Large Data Visualization. Academic Press, 2005.
I. T. Association. Infiniband architecture specification vol 1.
release 1.2, 2004.

R. Brightwell, T. Hudson, A. B. Maccabe, and R. Riesen.
The portals 3.0 message passing interface, November 1999.
G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster
Environment for MPL. In Proceedings of Supercomputing
Symposium, pages 379-386, 1994.

R. Castain and J. Squyres. Creating a transparent, dis-
tributed, and resilient computing environment: The Open-
RTE project. Journal of Supercomputing, To appear, 2007.
R. Castain, T. Woodall, D. Daniel, J. M. Squyres, B. Bar-
rett, and G. Fagg. The Open Run-Time Environment (Open-
RTE): A transparent multi-cluster environment for high-
performance computing. In Proceedings, 12th European
PVM/MPI Users’ Group Meeting, Sorrento, Italy, Septem-
ber 2005.

G. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen,
J. Pjesivac-Grbovic, K. London, and J. Dongarra. Extending
the mpi specification for process fault tolerance on high per-
formance computing systems. In Proceedings of the 2004
International Supercomputing Conference (1SC2004), 2004.
E. Gabriel, G. Fagg, G. Bosilica, T. Angskun, J. J. Dongarra,
J. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lums-
daine, R. Castain, D. Daniel, R. Graham, and T. Woodall.
Open MPI: Goals, concept, and design of a next genera-
tion MPI implementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting, 2004.

R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G.
Minnich, C. E. Rasmussen, L. D. Risinger, and M. W.
Sukalksi. A network-failure-tolerant message-passing sys-
tem for terascale clusters. International Journal of Parallel
Programming, 31(4), August 2003.

T. Imamura, Y. Tsujita, H. Koide, and H. Takemiya. An
architecture of StaMPI: MPI library on a cluster of parallel
computers. In Proceedings, 7 European PVM/MPI Users’
Group Meeting, September 2000.

N. Karonis, B. Tonnen, and 1. Foster. MPICH-G2: a grid-
enabled implementation of the message passing interface.
Journal of Parallel and Distributed Computing, 63(5):551—
63, May 2003.

R. Keller, E. Gabriel, B. Krammer, M. S. Mueller, and M. M.
Resch. Towards efficient execution of MPI applications on
the grid: porting and optimization issues. Journal of Grid
Computing, 1:133-149, 2003.

A. Lastovetsky and R. Reddy. HeteroMPI: Towards a
Message-Passing Library for Heterogeneous Networks of
Computers. Journal of Parallel and Distributed Computing,
66(2):197 — 220, 2006.

(14]
(15]

[16]

(17]

Myricom. Myrinet-on-VME protocol specification.

A. Pant and H. Jafri. MPICH-VMI: A high
performance MPI implementation of Teragrid.
http://vmi.ncsa.uiuc.edu/presentations/
vmi-mpich-arch-perf.ppt.

J. M. Squyres and A. Lumsdaine. The component archi-
tecture of Open MPI: Enabling third-party collective algo-
rithms. In V. Getov and T. Kielmann, editors, Proceed-
ings, 18th ACM International Conference on Supercomput-
ing, Workshop on Component Models and Systems for Grid
Applications, pages 167-185, St. Malo, France, July 2004.
Springer.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active messages: A mechanism for integrated
communication and computation. In [19th International
Symposium on Computer Architecture, pages 256-266, Gold
Coast, Australia, 1992.

