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Abstract. Many fundamental and resource-intensive tasks in scientific computing, such
as solving linear systems, can be approached through multiple algorithms. Using an algo-
rithm well adapted to characteristics of the task can significantly enhance the performance
by reducing resource utilization without compromising the quality of the result. Given
the numerous parameters governing resource trade-offs, algorithmic choices can explode
combinatorially. Even for the same simulation, the “best” solution method can vary across
architectures and input data, thereby making the selection a very challenging problem.
In this paper, we demonstrate how machine learning techniques can be used in selecting
solvers for sparse linear systems and in adapting them to runtime-dependent features of
the data and the architecture.
This process includes processing information in the dataset, identification of relevant fea-
tures, and specifying selection criteria for algorithmic choices. Our future research projects
include more ambitious plans for machine learning; this paper is but an initial demonstra-
tion of their applicability.
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1 Introduction

The solution of large, sparse systems of linear equations, such as those arising from finite dis-
cretization of partial differential equations, is a fundamental problem in scientific computing. The
number of reasonable choices to consider for their solution is overwhelming. As basic methods are
parameterized and nested, the algorithmic options explode combinatorially. It is easily demon-
strated, e.g., [25, 38], that there is no uniformly best method, independent of the data, even for
modest-sized systems on a serial computer with a perfect memory system. The task of choosing
the best method, based on some metric combining memory capacity and execution time in a
realistic computing environment, defies theory even within relatively narrow problem classes.

Consider, for instance, the family of typically ill-conditioned linear systems arising at each
step of an iterative process to solve a system of nonlinear partial differential equations. Successive
systems are related, though the characteristics, and therefore the best method for the inner prob-
lem, may evolve over the course of the nonlinear iteration. Furthermore, based on the simulation
stage, the accuracy to which the linear system needs to be solved can also vary and the memory
constraints can change according to the code implementation or architecture of the machine. A
direct method [23] with dynamic pivoting might give a greater guarantee of convergence than
any iterative method, but there may not be sufficient memory available and this method may
wastefully exceed accuracy requirements for an inner solve in the early stages of a nonlinear
problem. Iterative methods [5,44] require less memory but are not as robust. A very conservative
robust iterative method might consist of a Krylov solver preconditioned by a form of multigrid,
smoothed on each level (except the coarsest) by another Krylov solver preconditioned by some
form of relaxation or an incomplete factorization. This is, in fact, a default for the widely used
library PETSc [6], where the outer Krylov method is FGMRES, the multigrid is an F-cycle,
the smoother is GMRES, its preconditioner a block ILU(0) with one block per processor, and
the coarse level solve is performed by a parallel direct method. Such a solver is drastic overkill
for some commonly arising problems, such as implicitly time-differenced parabolic systems, but
PETSc has to work robustly “almost all of the time” for users who lack the sophistication to set
its options, and thus a conservative solver is made the default. However, much simpler and less
costly solvers can often be used. For example, if the system is a symmetric positive definite M-
matrix, the inner GMRES-ILU smoother can be replaced with a block damped Jacobi iteration,
and the outer FGMRES with Conjugate Gradients, or nothing at all.

Examples such as these highlight the importance of selecting a solver to match the problem
attributes. Selection of an appropriate solver can lead to benefits such as reduced memory re-
quirement, lower execution time, fewer synchronization points in a parallel computation, and so
forth. A challenge remains, however, in formulating algorithms for solver selection. There have
been several investigations and software developments related to selecting efficient solvers. The
Linear System Analyzer (LSA) [31] is a component-based problem-solving environment that al-
lows the user to specify combination of preconditioner and linear solver without being required to
know the details of the implementation. Various approaches to tuning solvers with applications
include: i) a poly-iterative linear solver [7], which is based on applying several iterative methods
simultaneously to the same system; ii) a composite multi-method solver [12,13], where the linear
system is applied to a sequence of solvers; iii) an adaptive multi-method solvers [11,36], where the
linear system is selected dynamically by observing linear system properties as they evolve during
the simulation process; and iv) a self adapting large-scale solver architecture (SALSA) [17–19],
which uses statistical techniques such as principal component analysis for solver selection.

Our present approach to solver selection is to use machine learning algorithms to generate
functions that map linear systems to suitable solvers. A mapping function consists of two parts:
a feature extractor and a classifier. The feature extractor computes numerical quantities, called
features, such as rank, norm or spectral estimates of the given linear system. The set of features
is designed to capture the characteristics of the system that are predictive of the performance of
solvers. The classifier maps the given feature values to a choice of solver. The feature extractor
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is designed by a human expert. The role of the learning algorithm is to choose a subset of the
features (so-called “feature selection”) and a function that maps the values of the selected features
to the choice of solver.

To construct the classifier, the learning algorithm receives as input a training set. The training
set is a set of linear systems and the amount of time (or other resource of prime consideration)
required by candidate algorithms to solve these systems. The classifier searches for a mapping that
makes good predictions on the training set, with respect to the resource. An implicit assumption
is that a solver that performs well on the training set will also perform well on new, as yet unseen
systems, in the test set. For this assumption to be valid the training set has to be representative
of the test set. Formally, we assume that there exists a fixed but unknown distribution D over
systems and that systems in the training set and the test set are drawn independently at random
according to D.

Traditional approaches to pattern recognition and machine learning [22] suggest separating
feature selection from the construction of the classifier. The reason for the separation is that most
algorithms for learning classifiers perform poorly on the test set when the number of features is
large compared to the size of the training set. This is the so-called “over-fitting” problem which
is a manifestation of the “curse of dimensionality.” The traditional approach, which is still the
common approach, is to avoid overfitting by carefully selecting a small set of features and then
applying the learning algorithm to the selected set. One problem with this approach is that the
optimal choice of features depends on the amount of available training data. Features that are
useful when the training set is large often have a negative effect on the test set performance
when the training set is small. Choosing a good set of features has become the main problem in
constructing good classifiers for real world problems and common wisdom is that the choice of
learning algorithm is of secondary importance. In our case, we use a tool, AnaMod [24], that has
a large repertoire of numerically relevant features, and the problem becomes one of eliminating
redundant or irrelevant features.

Two relatively new approaches to machine learning: Support Vector Machines (SVMs, see
e.g., [16, 50]) and AdaBoost [29] have proven to be very resilient with respect to over-fitting.
These algorithms have been used in many real-world problems in which the number of features is
much larger than the size of the training set, with no apparent degradation in test set performance.
Some theory has also been developed to explain this surprising behavior [9, 46]. The upshot is
that the expert designing the feature set is free to include in the feature set any feature she deems
to be informative, without concern of over-fitting the training set.

In this paper we use Alternating Decision Trees [27], a learning algorithm based on Ad-
aBoost, to generate the function for selecting an effective solver. In our experiments we study
the application of this approach to a practical set of problems, including a model Driven Cav-
ity Flow [10, 33] for computational fluid dynamics from the PETSc toolkit and the M3D [41]
magnetohydrodynamics code.

The problem of selecting sparse linear solvers presents a domain of almost limitless data; even
one code running one application, such as wing design or radar cross-section, in production mode
over a decade provides enviable opportunities for machine learning. Machine learning techniques
can be used to assist users in selecting linear solvers and in adapting them to runtime-dependent
features of the data and the architecture. Every step of the process is an issue for further research,
including specifying relevant features, evaluating them cost-effectively, collecting and processing
the resulting data, and specifying metrics for success of an algorithmic choice.

The remainder of this paper is organized as follows. Section 2 gives an overview of Adaboost
and Alternating Decision Trees. In section 3 we describe and justify our method for mapping the
solver selection problem into a classification problem and the way in which we quantify the ac-
curacy of the classifier. This section also discusses how ROC (Receiver Operator Characteristics)
curves can be used to measure the accuracy of the prediction. Section 4 describes one way in
which the machine learning tools of the preceding section can be applied to linear solver selec-
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tion. Section 5 briefly describes the two application domains and presents experimental results.
Section 6 discusses conclusions and directions of future work.

2 Machine Learning Methods

In this section we give a brief introduction to machine learning in general and to the specific
algorithms used in this paper.

2.1 A Short Introduction to PAC Learning

The main task of machine learning algorithms is to generate classification rules, i.e., mappings
from some instance space X to a finite label set Y . In our application the instance space is the
space of feature vectors, consisting of characteristics of the linear system and parameters of the
solvers. The label set is based on the performance of the set of candidate solvers with respect
to the linear systems. The most studied problem is that of binary classification in which the set
Y consists of two elements; in the rest of this section we concentrate on the binary case.1 We
denote a classification rule by h : X → Y .

We call an instance+label pair an example and assume that examples are drawn from some
fixed but unknown distribution D over the examples space X ×Y . The learning algorithm is pre-
sented with a finite set of examples, called the training set T = {(x1, y1), (x2, y2), . . . , (xm, ym)},
drawn independently at random according to D. The learning algorithm, given the training set as
input, generates a classification rule h. The goal is to generate a rule with a small generalization
error:

err(h)
.
= P (h(x) 6= y) ,

where the probability is with respect to the distribution D over the choice of x and y. In practice,
one cannot know the generalization error of a hypothesis and has to use an estimate instead.
The estimate is computed using a second set of examples drawn IID2 from D which is called the
test set. The fraction of the test set on which h(x) 6= y is call the test error of the h and is an
unbiased estimator of the generalization error.

The rule generated by the learning algorithm is a function of the training set. The training set
generated by IID draws from the distribution D. As a result, there is always some small probability
that the training set is unrepresentative and the resulting rule has a very high generalization error.
It is therefore unreasonable to require that the classification has small generalization error in all
cases. We use a definition of learning based on Valiant’s Probably Approximately Correct (PAC)
learning [49].

Definition 1 (PAC learning). Algorithm A learns a distribution D with accuracy ǫ > 0 and
reliability δ > 0 if there exists some training set size m such that if A is given a training set
generated by m independent random draws according to D it generates a classification rule h such
that err(h) ≤ ǫ with probability at least 1 − δ.

The field of PAC learning theory, started by Valiant’s seminal paper, is concerned with the
computational complexity of learning algorithms. In particular, it studies learning algorithms
for setups in which there is a functional relationship between instances x and labels y. In other

1 As there are usually more than two solvers, the natural formulation of the solver selection problem
as a classification problem is not a binary problem. In the next section we describe how we map this
non-binary problem into a binary problem and explain the reasons for using this mapping rather than
the natural set of labels.

2 We say that a set of examples is drawn Independently and Identically Distributed (IID) according to
D if they can be seen as independent draws from the fixed distribution D. In other words, if they are
independent random variables all having distribution D.
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words, the conditional distribution of y for any fixed value of x is concentrated on a single label.
Furthermore, the function c : x → y is assumed to be an element from a set of functions called
the concept class which we denote by C. We say that D is consistent with C if the conditional
distribution it implies between x and y is consistent with some c ∈ C.

We now give the two definitions that are at the basis of boosting algorithms. Note the order
of the quantifiers in these definitions.

Definition 2 (Strong PAC learning). A concept class C is strongly learnable if there is a
learning algorithm A for it that has the following property. For any ǫ > 0 and any δ > 0 there
exists a training set size m such that for any distribution D that is consistent with C, A can
learn D with accuracy ǫ and reliability 1 − δ using m training examples.

Definition 3 (Weak PAC learning). A concept class C is weakly learnable if there is a
learning algorithm A for it that has the following property. For some 1/2 > ǫ > 0 and 1 > δ > 0
there exists a training set size m such that for any distribution D that is consistent with C, A
can learn D with accuracy ǫ and reliability 1 − δ using m training examples.

2.2 Boosting

Clearly, strong PAC learning places a stronger requirement on the learning algorithm. Basically,
all that weak learning requires is that the generated classification rule be slightly correlated
with the true function, i.e. its performance be just slightly better than that of a random guess
whose error is always 1/2. It was therefore very surprising when Schapire [45] proved that Weak
and Strong PAC learning are in fact equivalent. Schapire’s proof is constructive; he gave an
algorithm, now called a boosting algorithm, which transforms any weak learning algorithm into a
strong learning algorithm. Moreover, the boosting algorithm is computationally efficient, that is,
all of the resources it requires (training examples, running time and storage) scale polynomially
with 1/ǫ and 1/δ, where ǫ and δ are the accuracy and reliability required for strong learning.

Schapire’s algorithm, and all of the other boosting algorithms developed since are based on
the following simple idea. While a weak learner is only required to find a hypothesis whose perfor-
mance is slightly better than chance, it has to do this for any distribution that is consistent with
C, in other words, for any distribution over the instance space X . The boosting algorithm utilizes
this assumed ability by running the weak learning algorithm multiple times, each time using a
different distribution over the instances. It then combines the resulting hypotheses, usually by
some kind of a majority vote function, to create the final, highly accurate hypothesis. Intuitively,
the process changes the distribution over the instances so that is it increasingly concentrated on
instances that are harder to classify, thereby forcing the weak learner to focus its efforts on those
examples.

2.3 Adaboost

Schapire’s original boosting algorithm had some important practical limitations, and so did the
boost-by-majority algorithm of Freund [26]. It was only when the Freund and Schapire introduced
the Adaboost algorithm [28] that boosting became a useful tool for practical problems. Adaboost
is a very simple and parameter-free boosting algorithm, as described in Figure 1. The algorithm
operates in iterations, indexed by t. Each iteration produces a weak classifier ht and a classifier
weight αt. The scoring function Ft is the sum of all weak classifiers produced so far, taken with
their corresponding weights. The final strong classifier is the rule defined by sign(Ft(x)).

On each iteration Adaboost calls the weak learner with a different weighting of the training
set and receives back the weak classifier ht. The positive number wt

i = e−yiFt−1(xi) is the example
weight associated with the training example (xi, yi) at iteration t. Under the weak learning
assumption the total weight of the examples on which ht(xi) = yi should be larger than the
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total weight of the examples on which ht(xi) = −yi. If this is the case then ht(x) is correlated
with y and the classifier weight αt is positive. In fact, if the relation between the total weights is
reversed, things work out just as well, because in this case ht(x) is anti-correlated with y which
is equivalent to −ht(x) being correlated with y and in this case αt is indeed negative. If the two
total weights are equal, there is no correlation, αt = 0 and Ft+1 = Ft. The only case in which the
formula for αt explodes is if ht(x) = y (or ht(x) = −y) on all examples (note that the example
weights are never zero). This explosion is quite justified, since in this case ht(x) is not a weak
rule at all, but rather is a perfect rule (on the training examples), which means that boosting is
not needed in the first place.

F0(x) ≡ 0
for t = 1 . . . T

∀i; w
t
i = e

−yiFt−1(xi)

Get ht from weak learner

αt = 1
2

ln

„

P

i:ht(xi)=yi
wt

i
P

i:ht(xi)6=yi
wt

i

«

Ft+1 = Ft + αtht

Fig. 1. The Adaboost algorithm.

The main provable property of the Adaboost algorithm is a bound on the training error of
the strong rule as a function of the weighted errors of the weak rules. We define the edge γt of the
classifier ht as the advantage that ht has over random guessing with respect to the weights wt

i .
The edge is equal (within a constant factor) to the weighted correlation between the prediction
ht(x) and the label y:

γt =

∑
i:ht(xi)=yi

wt
i

∑m

i=1 wt
i

−
1

2
.

Using the definition of the edge, one can easily prove the following bound on the number of
mistakes that the the combined rule makes on the training set:

♯ {i : sign(FT (xi)) 6= yi} ≤ me−2
P

T
t=1 γ2

t . (1)

Clearly, if |γt| ≥ γ > 0 for all iterations t, the number of mistakes made by the strong rule
decreases exponentially with the number of iterations T .

2.4 Adaboost Resistance to Overfitting

While the last result is interesting, it is insufficient for showing that boosting is an effective
learning method. After all, Equation 1 bounds the number of mistakes that the strong rule
makes on the training set, while we are interested in the number of mistakes the rule is likely to
make on an independent test set. Fortunately, using tools from uniform convergence theory, one
can prove that the performance on the test set would not differ too much from the performance
on the training set given that the number of boosting iterations T is small and that the weak of
weak rules has finite Vapnik-Chervonenkis dimension (see [50] for details.)

However, as it turns out, this analysis is overly pessimistic in analyzing the performance
of Adaboost in practical applications. Cortes and Drucker [21], Quinlan [42] and Breiman [14]
observed that the behavior of the test error is usually significantly better than would be expected
from the uniform convergence bounds. In fact, it is often the case that the test error of the strong
rule continues to decrease long after Adaboost drove the training error to zero!
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Fig. 2. Error curves and the margin distribution graph for boosting C4.5 [43] on the letter dataset
as reported by Schapire et al. [46]. Left: the training and test error curves (lower and upper curves,
respectively) of the combined classifier as a function of the number of rounds of boosting. The horizontal
lines indicate the test error rate of the base classifier as well as the test error of the final combined
classifier. Right: The cumulative distribution of margins of the training examples after 5, 100 and 1000
iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves, respectively.

Figure 2 summarizes an example of this behavior 3. The left graph in Figure 2 shows the
training error and test error of the strong classification rule as a function of the number of
boosting iterations. The training error decreases to zero within five iterations, this is to be
expected as the weak learner that is used (C4.5) is a powerful learning algorithm and the rules
that it generates are quite accurate. The test error decreases from 18% to 10% in the first five
iterations, this is also consistent with the standard theory. The surprising fact is that the test
error continues to decrease after the fifth iteration. Moreover, the decrease is both significant:
from 10% down to about 3% and persistent: the error does not increase significantly even after
one thousand iterations! To appreciate how surprising this is, consider that each of the decision
trees has more than a hundred nodes, which means that the combined hypothesis has more than
100,000 parameters, while the training set contains only 16,000 examples. Building a model with
more parameters than data-points is usually a nonsensical proposition, but apparently not in this
case!

There is still no completely satisfactory explanation of this surprising phenomenon. A partial
explanation was given by Schapire et al [46]. The explanation is based on the concept of a
classification margin. Recall the Scoring function FT (x) =

∑
t=1 αtht(x) described earlier. The

normalized margin for examples (x, y) is defined as

M(x, y) = y

∑
t=1 αtht(x)
∑

t=1 |αt|

It is easy to verify that the normalized margin is in the range [−1, +1] and that it is positive if and
only if sign(FT (x)) = y, i.e. when the strong hypothesis is correct. The main idea of the margins
is that while M(x, y) > 0 corresponds to a correct prediction, M(x, y) > θ > 0 corresponds to a
confident correct prediction. The implication is that if most of the training examples have a large
positive margin then the test error is likely to be small. This explains how boosting improves the

3 This is one of several examples presented and discussed in detail in [46]. The particular dataset
discussed here is the “letter” database from the UC-Irvine repository [39]. There are 16,000 training
examples and 4,000 test examples, each example consists of 16 numerical features representing an
image of a hand-written English letter and the label is the identity of the letter. The weak learning
algorithm used in this example is Quinlan’s C4.5 [43].
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test error of the strong hypothesis even after the iteration in which the training error decreased
to zero. On that iteration the minimal margin over the training set becomes positive; beyond that
point the minimal margin continues to increase, implying that the predictions are more confident,
and corresponding to the fact that the test error continues to decrease. This is demonstrated in
the right graph in Figure 2, in which we see that the margins on the training set increase from
iteration 5 to iteration 100 after which they change very little. This corresponds to the significant
decrease in the test error between iterations 5 and 100 which is followed by almost no change
up to iteration 1000. Schapire et al. [46] also prove an upper bound on the generalization error
which depends on the distribution of the classification margins on the training set but not on the
number of boosting iterations.

2.5 Alternating Decision Trees

Adaboost is a very general algorithm. It can work with any weak learning algorithm. In order to
apply it to a specific problem one needs to choose a weak learning algorithm. One choice that has
enjoyed much popularity and success is boosting decision trees [14,30,42]. In this combination the
weak rules are generated by an a standard learning algorithm such as CART [15] or C4.5 [43] and
Adaboost is run on top of the learning algorithm to produce a weighted average of classification
trees.

Freund and Mason [27] developed a learning algorithm for rules called “alternating decision
trees” that uses only boosting. Alternating decision trees are a generalization of weighted sums
of decision trees. An example of an alternating decision tree is given in Figure 3. In this case,
instances consist of two real-valued features, a and b. There are two types of nodes in the tree:
prediction nodes, denoted by ellipses, which contain a real value, and decision nodes denoted by
rectangles, which contain an inequality between one of the features and a constant. The name
“alternating trees” comes from the fact that the two types of nodes are organized in alternating
layers.

The alternating decision tree associates a real-valued score with every instance. The sign of
that score is the predicted label for the instance. To calculate a score, one starts at the root and
proceeds along multiple paths down the tree according to the following rules.

1. If the node is a prediction node (ellipse) proceed along all of the dotted edges emanating
from it.

2. If the node is a decision node (rectangle) proceed along the edge marked Y if the condition
in the decision node holds. Otherwise proceed along the edge marked N.

The score that is associated with an instance is the sum of the values in all of the prediction
nodes that are reached according to these rules. For example, consider the instance a = 1, b = 1.
For this instance the conditions a < 4.5 and b > 0 hold while a > 2 and b > 1 do not. Thus the
prediction nodes that are reached are those whose values are +0.5,−0.7, +0.3,−0.2, +0.1 and the
total score is 0.0.

Learning an alternating decision tree can be done by considering the addition of each decision
node and the two prediction nodes emanating from it as an addition of two weak classifiers, one
for each of the prediction nodes. For details, see Freund and Mason [27]. The MLJava package
is an implementation of this algorithm that was used in this work.

3 Solver Selection as a Classification Problem

In this section we discuss how solver selection can be represented as a binary classification problem
Consider L to be the set of linear systems, defined by a matrix and right-hand side pair and

S to be the candidate set of solvers. Let solution of each linear system l ∈ L by each solver s ∈ S
be measured by a performance parameter π(l, s).
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Fig. 3. An alternating decision tree.

We define ŝ to be the optimal solver for a linear system l, if

π(l, ŝ) = min(π(l, s))
∀s∈S .

As discussed in section 1, the cardinality of the set of solvers may be quite large and an
exhaustive search would be expensive. In addition, there might be solvers for which the values of
the associated performance parameters are close enough to be approximately equal, and ordering
these solvers would yield no further advantage. Thus it is generally more realistic to define a set
of nearly optimal methods Ŝ, as opposed to a single method. We can thus partition S into two
sets Ŝ and S̄. In practice, division of the methods into set Ŝ and S̄ is determined by the following
user-specified variables: i) the improvement factor, ρ, ρ > 1 and ii) a default method s̃.

The set of nearly optimal methods is now defined in terms of these two variables as;
If ρ(π(l, s)) < π(l, s̃), s ∈ Ŝ; Otherwise s ∈ S̄.
Therefore, finding a set of suitable solvers for a linear system l can be expressed as defining

a function
Fπ : L → S, such that Fπ(l) = Ŝ.
For each linear system l and associated performance parameter π, the solvers can be di-

vided in two groups: i) solvers that are elements of Ŝ and ii) solvers that are elements of S̄.
This is equivalent to a binary classification problem where the instance space is L × S, the la-
bels represent whether the solver is an element of Ŝ or S̄ and the ideal classification rule would be

hπ : (L × S) → {“good”, “bad”}, such that:
hπ(l, s) =“good” if s ∈ Fπ(l); and hπ(l, s) =“bad” otherwise.
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Of course, it is generally impractical to form hπ to exactly satisfy the above equations, and we
use machine learning algorithms to approximate hπ.

3.1 Accuracy of the Prediction

Our goal is to generate a rule with low prediction error. The accuracy of prediction can be
measured by the sensitivity and specificity. Let the binary labels be “good” and “bad”. The
sensitivity is the probability that the classifier will predict a “good” entry as “good” and the
specificity is the probability that a “bad” entry will be predicted as “bad”. The receiver operator
characteristic (ROC) curve [51] is commonly used for assessing the tradeoff between sensitivity
and specificity.

Figure 4 shows a binary classification where the entries are arranged according to a test value,
for example, the performance parameter. The two Gaussian curves represent the distribution of
the “good” and “bad” classes. There is an area of overlap between the curves where it is not
possible to distinguish between the two classes. The dotted line represents a cutpoint. Any value
on the left of the line is “bad” and any value on the right is “good”. According to the position
of the line the entries can be

– True Positive (TP): actual label is “good” and predicted label is “good”.
– False Negative (FN): actual label is “good” and predicted label is “bad”.
– False Positive (FP): actual label is “bad” and predicted label is “good”.
– True Negative (TN): actual label is “bad” and predicted label is “bad”.

Sensitivity is calculated as TP
(TP+FN) and specificity is calculated as TN

(TN+FP ) .

ROC curves plot the true positive rate (sensitivity) by the false positive rate (unity minus
specificity) as the cutpoint discriminating between “good” and “bad” is shifted. Suppose the
cutpoint starts from the rightmost point, then there are no entries predicted as “good”. Therefore
both the true positive rate and the false positive rate is zero. As the threshold is moved towards
left, the number of true positive entries increase. In most cases, initially the number of false
positives remain zero, till the overlapping region is reached. For an ideal classification, where
there is no overlapping region, the true positive rate would reach its maximum value 1.0, while
the false positive rate remains at zero, and then, when the threshold is shifted further left, the
true positive rate would remain constant at 1.0 while the false positive rate increases. Such as
an ROC curve will closely follow the lefthand border and then the top border. In contrast, if the
two distributions exactly overlap, then the increase in true positive rate would be exactly equal
to the increase in the false positive rate. The ROC curve is now the x = y line, and represents
a random guess. It the curve falls below this line, then the classification is worse than a random
guess and is of no use at all.

From these observations it is easy to see that the area under the ROC curve is an important
measurement of the accuracy of the classification.

3.2 Issues in Implementing Solver Selection as a Classification Problem

Solver selection problem can easily be expressed as a binary classification once the linear system,
solver set and the selection criteria are fixed. However, determining and representing the elements
in these groups is a nontrivial exercise. The efficiency of the classification is affected by how closely
the input to the classification represents the original problem. Given below are some of the issues
involved in defining the classification inputs;

– Linear System Set: Most linear systems to be solved are generated in course of a simulation
process and the characteristics of the matrices are influenced by the linear solvers used earlier
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elements).

during the simulation. In order to have a consistent set of linear systems, we designate one
solver as the default solver s̃. The simulation is executed using the default solver to solve the
linear systems. The matrices and corresponding right hand sides generated in course of the
simulation, are stored from the elements of the linear system set L. The binary classification
problem, with respect to a performance parameter π is posed as follows: hπ(l, s) = “good” if
ρ(π(l, s)) < π(l, s̃) : ρ > 1 and hπ(l, s) = “bad” otherwise.

– Multiple Selection Criteria: We derived the binary classification representation for ex-
amples where the solver selection depends on only a single performance parameter. However,
generally the selection criteria might be defined by multiple parameters, π1, π2, . . . πn. For
example, the accuracy of the solution, represented by the norm of the residual vector might
be as important as execution time in determining the solver. The multiple criteria would be
expressed as the union and/or intersection of the individual performance parameters. Sim-
ilarly, the set of suitable solvers would be formed by the union and/or intersection of the
individual solver subsets obtained from Fπ1 , Fπ2 , . . . Fπn

, as appropriate.

3.3 Feature selection and computation

The selection of appropriate features is an important step in the setup of any classification
process. We use the AnaMod software [24] developed by two of the authors. In this section we
will expound on various issues that come up in computing problem features.

In our problem domain of solving systems of linear equations, we have a fairly large number
of features to choose from, which we can sort in a number of categories.

structural Properties that describe the sparsity structure of the matrix, such as bandwidth,
average or max/min number of nonzeros per row, and the number of structurally unsymmetric
elements (aij = 0 while aji 6= 0).

normlike The 1-, infinity-, and Frobenius- norms of the matrix, as well as these norms taken
of the symmetric and nonsymmetric part of the matrix. These quantities, like those of the
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previous category, can all be computed in time proportional to the number of nonzeros of
the matrix.

spectral Properties that describe the spectrum or field of values of the coefficient matrix. These
properties can not be computed exactly, but estimation is feasible. For the features in this
category, we run a modest number of iterations of GMRES with the coefficient matrix, and
analyzing the resulting Hessenberg matrix.

normality Various bounds on the departure from normality. While these bounds can be com-
puted exactly, the accuracy of the bounds as such may be questionable.

variance Various heuristic measures of how ‘wild’ a matrix is, such as standard deviation from
the average value of the matrix diagonal, or variability inside rows or columns.

Relevance of features Some of these features (especially the spectral and normal categories) have a
direct, and theoretically (qualitatively, though not necessarily quantitatively) known relationship
with the method performance that we want to optimize. Others may have an unknown relation,
or may be indirect correlation to relevant features. For instance, among different discretizations
of one partial differential equation, using higher order elements tends to a higher matrix condition
number, making the system harder to solve. At the same time, it increases the number of nonzeros
per row, so that latter feature, while not mathematically relevant in itself, becomes correlated to
solver behaviour.

Computation of features In the tests reported in this paper, we have computed all available
features without regard for the cost. In this section we will outline some of the issues relating to
the cost of feature extraction.

First of all, for the training of our classifier system, since it will happen only once, it makes
sense to compute all features, regardless of the cost. The training of the system is expected to
be amortized over many future applications of the classifier. However, in using the classification
system, the feature calculation is a preprocessing step for a single system solution, or a low
number of them, and its cost therefore should not overwhelm the expected cost of computing the
solution of the system.

We have already alluded to the fact that certain features are more expensive to compute
than others. The cost of computing the spectral features, for instance, is theoretically much
higher than that of solving a system if we would compute to full numerical precision. Even an
approximate compution of these features is essentially that of partway solving a system with the
given coefficient matrix. Only if the solution of the system is expected to take a large number
of iterations, or if many systems with this coefficient matrix are going to be solved, is such an
expenditure defensible.

Missing features Bounds on the departure from normality are potentially very useful, but are
even harder to compute than the spectral features. Most such bounds involve the norm of the
commutator AAt −AtA, which can be seen to involve the inner products of all pairs of rows and
all pairs of columns. Such a calculation is only feasible for fairly narrow banded, or unrealistically
small, matrices.

Thus, ideally we have to take into account in our system that certain features may not always
be available, and we have to gauge the accuracy of classifiers when using a strict subset of the
whole collection of features. Interestingly, Boosting can use features with occasionally missing
values. In assessing the usefulness of a feature, Boosting will measure how much information can
be extracted from the feature, taking into account that with some probability the value of the
feature is not known. It is important that the fraction of the training set on which the feature
calculation fails would be representative of the eventual application, which underscores, once
more, the importance of having large and representative training sets.
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4 Applying Machine Learning

Application of machine learning to solver selection consists of the following three stages; a
schematic diagram of the process is given in Figure 5.

– Database Construction: The machine learning software uses the information stored in a
database to build a classifier that maps the matrices to their corresponding solvers. The
database is formed of entries representing the efficiency of the solution of a set of linear
systems, L, with respect to a candidate set of solvers S. Each linear system, obtained from
user input or generated from an application code, is (in principle) solved by all the solvers
from the candidate set. An entry in the database, associated with the solution of l ∈ L by
a solver s ∈ S consists of: i) the feature vector representing the numerical characteristics of
l, ii) the parameters of the solver s, and iii) labels, representing the ranking of the solution
with respect to a performance parameter such as execution time, terminal residual norm, etc.
The total number of entries in the database is number of systems times number of solvers.
As discussed in section 1, feature selection is by itself an important challenge. Since we are
using Adaboost as the machine learning tool, the problem of “over-fitting” is alleviated.
However, the software should be able to apply other machine learning methods if needed.
In such a generalized scenario, feature selection may be of prime importance. Furthermore,
one of our future research projects is to compare the efficiency of different sets of features.
Keeping this in mind, we have added an option for identifying important features from each
entry in the database.

– Classifier Creation: The database is divided into training and testing sets based on a three-
fold cross validation (three different divisions of training and testing set) of the database.
The machine learning algorithm (MLJava) is applied on each of the training and their corre-
sponding testing sets. The learning algorithm builds the classifier using the training set and
predicts its accuracy with the testing set. The accuracy of the classifiers is measured by the
area under ROC curves [51]. We choose classifiers with high accuracy.

– Solver Prediction: The choice of solver depends primarily on the matrix characteristics. There-
fore it is likely that the solvers that perform well for systems recorded in the database, would
also be applicable for any other systems that have similar characteristics. The feature set of
such a new matrix and the set of solvers S, without labels, are given as input to the classifier.
The output is a prediction which labels each solver in S as “good” or “bad” according to its
suitability for the new matrix.

We use the suite of linear solvers from PETSc for solving the linear systems. The system
characteristics are obtained employing AnaMod, as described in section 3.3 [1], a library of
modules that uses PETSc functions to compute various properties of a system. PETSc, the
Portable Extensible Toolkit for Scientific Computing (PETSc) [6], was developed at the Argonne
National Laboratory, and is in use in thousands of scientific software projects around the world
and has run on essentially all of the major scientific computing architectures. PETSc software
has powered three Gordon Bell prizes for “special achievement” [2–4]. This toolkit consists of
a suite of distributed data structures and modules for the scalable solution of various scientific
applications expressed at different levels from linear systems to method-of-lines integration of
partial differential equations. PETSc applications are composed hierarchically. Users may employ
PETSc’s own structured array or unstructured low-level data objects for representing meshes,
vector fields, and linear operators, or they may register their own.

We use MLJava [37] to create the classifiers. The input to MLJava consists of three files: the
training data, the test data, and the data specification. The data specification file lists the names
and types of each example attribute (in this case we list the linear system properties that were
evaluated and the solver parameters) and the possible set of labels (e.g., “good” or “bad”) for
each example. There are currently three attribute datatypes: number (represented as a floating
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point number), text (a sequence of words), and finite (composed of a defined set of strings and
used for specifying attributes which have a fixed set of values, e.g. the list of solvers). MLJava
implements boosting [29] and produces classifiers in the form of Alternating Decision Trees [27].

5 Experimental Results

For our experiments we use linear systems from two different applications: i) the lid- and
thermally-driven cavity flow in PETSc’s scalable nonlinear equations solvers (SNES) demon-
stration example ex27.c and ii) the M3D extended MHD simulation code. We use MLJava to
predict the outcome of solvers for the linear systems arising from parameterized instances of these
problem sets. The performance parameters are measured by running the applications on the Jazz
cluster at Argonne National Laboratory [34], which has a Myrinet 2000 network and 2.4 GHz
Pentium Xeon processors with 1-2 GB of RAM. Our results include ROC graphs illustrating the
accuracy of the prediction and a comparison of the execution times of the default and predicted
solvers. They demonstrate that machine learning techniques can indeed predict “good” solvers.
The results also show that the set of suitable solvers can change between different applications,
as well as between different instances of the same application, that is, that the performance
prediction problem is nontrivial.

5.1 Driven Cavity Flow with Pseudo-transient Continuation

The driven cavity flow model [10, 33] is an example of incompressible flow due to the combined
effects of a frictional driven lid and buoyancy in a two-dimensional rectangular cavity. The lid
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velocity is steady and spatially uniform and generates a principal vortex and subsidiary corner
vortices. The principal vortex is opposed by the buoyancy vortex, which is induced by differ-
entially heated lateral cavity walls. The governing differential equations are the incompressible
Boussinesq Navier-Stokes equations in velocity-vorticity form and an internal energy equation.
These four linear or quasi-linear scalar elliptic equations are discretized on a uniform mesh using
upwind differencing on a nine-point stencil. The resulting system of nonlinear algebraic equa-
tions is solved using an inexact Newton method [32,40]. The linearized Newton system is solved
approximately by an iterative Krylov solver. For a fixed grid size, the nonlinearity of the system
is determined by the values of the Grashof number and the lid velocity (a Reynolds number).
The Prandtl number is set to unity in our tests. It has been observed that Newton’s method
often struggles at higher values of these parameters when started from a “cold” initial condition.
This problem can be overcome by using a globalization technique known as pseudo-transient
continuation [33]. We used the driven cavity implementation from the PETSc example [20].

We store the linear systems formed in course of the simulation, and construct a database
based on these stored matrices. We use the GMRES Krylov subspace method with PETSc’s
default restart interval of 30 iterations and block incomplete LU (ILU) with level of fill 0 as
the linear solver during the simulation of the driven cavity code, and this is considered as the
default solver. We label a solver as “good” if its execution time improves upon the default by
a specified factor, such as 1.5 here. The set of solvers is built from the following eight Krylov
accelerators: BCGS, TFQMR, FGMRES(5,30,60) and GMRES(5,30,60), where the integers in
parentheses denote the restart sizes, and each size variant is considered a different method. The
problem was consistently distributed over 4 processors (a reasonable choice for overall execution
turnaround) using Block Jacobi as the distributed memory domain-decomposed preconditioner.
The preconditioners for individual subdomains include point-block ILU with levels of fill 0,1,
and 2; a full-elimination LU sparse solver, point-block Jacobi, and a solver instance where no
subdomain preconditioner is used. We will consider a “solver” as being the combination of the
Krylov method, the domain decomposition preconditioner, and the subdomain preconditioner.
Therefore, for this set of experiments the cardinality of the solver set is 48.

We run simulations with the following values of the physical parameters: Reynolds number
based on the lid velocity of (5,15,25) and Grashof number based on the lateral wall temperature
differential of (100,500,1000). The dataset has about 15, 000 entries composed by solving linear
systems involving the Jacobian matrix and the residual vector as the right-hand side, written out
over many pseudotransient timesteps from these 9 different simulations. The classifier is tested
on a new set of simulations with Lid Velocities 10 and 20 and Grashof number (100,500,1000).
Figure 6, shows the ROC curves and simulation time of the entire driven cavity application with
the predicted solvers.

The results show that the BiCGS Krylov solver combined with subdomain preconditioner ILU
with levels of fill 0 and 1 performs much better than the default. We see that for this application,
the set of suitable solvers remain unchanged over problem instances. The driven cavity problem
therefore provides an example in which the time spent in solver selection pays off in a trivial
way, by reducing the simulation time over the default, without any need to be dynamic in the
selection.

5.2 Linear Systems arising from M3D

Our second problem set is composed of linear systems created during the execution of the M3D
code [35, 41]. M3D is a parallel three-dimensional plasma simulation code developed by a multi-
institution collaboration in the U.S. Department of Energy. It is suitable for performing linear and
nonlinear calculations of plasma in toroidal topologies, including tokamaks (which are toroidally
symmetric) and more general stellarators. Ideal and resistive MHD models, as well as a two-fluid
model, are implemented. M3D employs finite differences in the toroidal direction and unstruc-
tured linear finite elements on triangles in each poloidal crossplane. Only the crossplane problems
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Fig. 6. Left: ROC curves for linear systems arising in the Driven Cavity Flow Problem. Right:Execution
Time for solving Driven Cavity Flow Problem with different solvers

are handled fully implicitly; within each timestep each of the crossplane problems is solved inde-
pendently as two-dimensional scalar systems. Some of the systems are parabolic in time, some are
purely elliptic with Dirichlet boundary conditions, and some are purely elliptic with Neumann
boundary conditions. The latter problems possess a nontrivial nullspace of constant functions.
Our examples are drawn from a resistive, single-fluid model.

The matrices are segregated into three groups, according to their degree of diagonal domi-
nance: weak, moderate, or strong. The diagonal dominance provides a traditional indicator of the
difficulty of finding a solution, weakly dominant matrices being more difficult to solve. In this
case, not all solvers are able to solve all the linear systems, therefore we apply two criteria for
solver selection: i) guarantee of convergence (to a relative tolerance of 1e-05, within 600 iterations
of the Krylov method) and ii) low execution time. The execution time was compared to the time
taken by the default solver either to converge or to determine that convergence is not possible.

We used MLJava to build two classifiers, one for each of the above criteria. The classifier
corresponding to the first criterion, predicted a solver as “good” if it converged to a solution,
without taking in to account the execution time. and the classifier corresponding to the second
criterion, predicted a solver as “good” if the execution time was better than the default method
by a factor of 1.5, regardless whether it converged or not. It is easy to see that the set of solvers
that satisfy both the criteria, can be obtained by taking the intersection of the “good” solvers
from the two predictions.

The default solver was GMRES with restart of 30 and ILU with level of fill 0. The solver
set comprised of two separate direct solvers, SuperLU [48] and Spooles [47], and six Krylov it-
erative methods; BCGS, TFQMR, FGMRES(5,30,60), and GMRES(5,30,60). The problem was
distributed over 4 processors. The top level preconditioner was ASM with either 0, 1, or 2 degrees
of overlap, or an algebraic multigrid method from the Hypre package such as BoomerAMG, Para-
Sails, and Euclid. When an ASM method was used we also employed subdomain preconditioners
including ILU and Incomplete Cholesky (ICC) with 0, 1, and 2 levels of fill, LU, Jacobi, SOR
and also an option where no subdomain preconditioner is used. The total number of solvers is
242.

Three groups of linear systems, based on three different two-dimensional finite element meshes
with approximately 7,000, 13,000 and 18,000 nonzeros, respectively, were used for building the
dataset. The classifier was applied on additional matrices with approximately 12,000 and 24,000
nonzeros. For weakly and moderately diagonal matrices the challenge lies in finding a solver
that solves the linear system at all (the default method fails to converge) and for the strongly
diagonally dominant matrices the goal is to find a solver that is faster by a multiplicative margin.
The results showing the ROC curves and solution times of the matrices are given in Figures 7-
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9. Both the weakly diagonally dominant and moderately diagonally dominant matrices require
memory-expensive preconditioners like LU and BoomerAMG.

The prediction yields some false positives (it predicted convergence that was contradicted by
the results) in the following two cases: i) GMRES(30) with BoomerAMG as a solver for the weakly
diagonally dominant matrix with 24,000 nonzeros (failure to converge) and ii) GMRES(60) with
ASM overlap 0 and ICC with fill 2 as a solver for the moderately diagonally dominant matrix with
12,000 nonzeros (overflow of available memory). Compared to the number of choices of solvers,
the number of false predictions is deemed miniscule. In contrast, there were no false positives in
the predictions of the strongly diagonally dominant matrices and though all solvers converged,
the predicted “good” solvers were the ones using the Jacobi preconditioner, a preconditioner
requiring considerably less memory.

As the results illustrate, the M3D matrices have more varied characteristics than the driven
cavity problem because the set of “suitable” solvers change across the matrix groups and even
across problem instances in the same group. While weakly and moderately diagonally dominant
linear systems require expensive preconditioners such as BoomerAMG, strongly diagonally dom-
inant systems can be solved efficiently with much cheaper preconditioners like Jacobi. Machine
learning techniques serve an important role by matching appropriate solvers to these character-
istics.
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Fig. 7. Left: ROC curves for weakly diagonally dominant M3D matrices. Right: Time Taken to solve (or
detect failure of convergence of) weakly diagonally dominant M3D matrices; GMRES30-ILU0,the default
method fails to converge.

6 Conclusions and Future Plans

This paper presents an initial demonstration of the applicability of machine learning to the
selection of solution algorithms for large sparse linear systems drawn from computational fluid
dynamics and magnetohydrodynamics applications, which are among the leading consumers of
resources at major computational user facilities. Boosting, the first of several methods to be
evaluated for this purpose, can indeed identify efficient solvers for previously unseen linear systems
drawn from a class on which the learner has previously been trained. Given that the solution
of linear systems is often the subtask of greatest computational resource demand in an overall
scientific or engineering simulation, there is enormous potential in equipping solver libraries with
machine learning capabilities. However, machine learning has large data needs and a training
cost that are best amortized over applications that have long lifetimes.
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Fig. 8. Left: ROC curves for moderately diagonally dominant M3D matrices. Right: Time Taken to solve
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default method fails to converge.
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We observe that we can order quantitative and descriptive properties of matrices according to
their relative importance by counting the number of times each of them appear in the classifier.
The correlation between matrix properties and linear solvers is a topic of extensive theoretical
and experimental study among numerical analysts (see, e.g., flowchart in [8]) and studying the
structure of the classifiers may enable contributions in this area.

Another interesting avenue of research is the comparison of the results of different machine
learning methods for solver selection. Just as there are many solution algorithms, so is there a
multitude of machine learning algorithms to be employed to select among them, which suggests
a meta-machine learning task beyond the first-level task. We plan to extend our experiments to
a larger set of application domains and learning methods.

7 Acknowledgments

We would like to thank Jin Chen of the Princeton Plasma Physics Lab for providing us with the
M3D matrices. We are also grateful to Raphael Pelossof of Columbia University for his package
to render ROC curves from the MLJava output files.

8 Author Biographies

Sanjukta Bhowmick: Sanjukta Bhowmick is a Post Doctoral Research Associate with a joint
appointment at at the Department of Applied Physics and Applied Mathematics, Columbia Uni-
versity and the Mathematics and Computer Science Department, Argonne National Laboratory.
She obtained her Ph.D. in Computer Science from the Department of Computer Science and En-
gineering at the Pennsylvania State University. Her current research interests include developing
fast and reliable solvers of large scale sparse linear systems, use of machine learning algorithms
for detecting linear solvers and combinatorial problems in automatic differentiation.

Victor Eijkhout: Victor Eijkhout is a Research Scientist at the Texas Advanced Computing
Center of The University of Texas at Austin. He obtained his Ph.D. in mathematics from the
University of Nijmegen in the Netherlands under Owe Axelsson, and subsequently held a post-
doc position at the University of Illinois, Urbana-Champaign, and research faculty positions in
mathematics at the University of California, Los Angeles and computer science at the University
of Tennessee. His current interests are in parallel numerical linear algebra, performance optimiza-
tion of sparse kernels, and self-adaptive numerical software.

Yoav Freund: Yoav Freund is a professor of computer science in the University of Califor-
nia, San Diego. His primary interest is in machine learning, statistics and their applications. His
focus is on algorithms for making statistical inference, especially using large and high-dimensional
datasets. Freund and Schapire invented the Adaboost learning algorithm for which they won the
2003 ACM-SIGACT Godel award and the 2004 ACM Kanellakis award.

Erika Fuentes: Erika Fuentes is a PhD student at the University of Ten-
nessee, Knoxville. She obtained her BS. degree in Computer Engineering from the Institute of
Technology and Superior Studies of Monterrey (ITESM), Mexico City. Obtained an MS. degree
in Computer Science from the University of Tennessee, Knoxville in 2002. Currently working as
a graduate research assistant for the Innovative Computing Laboratory in the SALSA project,
with main research area in Self-Adaptive Numerical Software and applied statistical methods in
numerical problems.



22 ML in Selecting Linear Solvers

David Keyes: David Keyes is a computational mathematician with primary interests in
parallel numerical algorithms and large-scale simulations of transport phenomena – fluids, com-
bustion, and radiation. He is the currently the Vice President-at-Large of the Society of Indus-
trial and Applied Mathematics (SIAM), the Fu Foundation Professor of Applied Mathematics at
Columbia University, and the Acting Director of the Institute for Scientific Computing Research
(ISCR) at Lawrence Livermore National Laboratory. He is active in the domain decomposition,
parallel CFD, and petaflops architecture communities. His academic background includes degrees
in mechanical engineering (B.S.E., Princeton, 1978) and applied mathematics (Ph.D., Harvard,
1984). He shared in the 1999 Gordon Bell ”Special” Prize.

References

1. Anamod online documentation. http://www.tacc.utexas.edu/∼eijkhout/doc/anamod/html/.

2. M. F. Adams, Harun H. Bayraktar, Tony M. Keaveny, and Panayiotis Papadopoulos. Ultrascalable
implicit finite element analyses in solid mechanics with over a half a billion degrees of freedom. In
Proceedings of SC’04. Winner of Gordon Bell Special Prize at SC2004: Large scale trabecular bone
finite element modeling:http://www.sc-conference.org/sc2004/schedule/pdfs/pap111.pdf.

3. Volkan Akcelik, Jacobo Bielak, George Biros, Ioannis Epanomeritakis, Antonio Fernandez Omar
Ghattas, Eui Joong Kim, David O’Hallaron, and Tiankai Tu. High resolution forward and inverse
earthquake modeling on terascale computers. In Proceedings of SC’03, 2003.

4. W. K. Anderson, W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. Achieving high
sustained performance in an unstructured mesh cfd application. In Proceedings of SC’99, 1999.

5. O. Axelsson. A survey of preconditioned iterative methods for linear systems of equations. BIT,
1987.

6. S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley, L. McInnes, Barry F. Smith, and
H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 2.2.1, Argonne National
Laboratory, 2004. http://www.mcs.anl.gov/petsc.

7. R. Barrett, M. Berry, J. Dongarra, V. Eijkhout, and C. Romine. Algorithmic bombardment for the
iterative solution of linear systems: A polyiterative approach. Journal of Computational and applied
Mathematics, 74:91–110, 1996.

8. Richard Barrett, Michael Berry, Tony Chan, James Demmel, June Donato, Jack Dongarra, Victor
Eijkhout, Roidan Pozo, Charles Romine, and Henk van der Vorst. Templates for the Solution of
Linear Systems:Building Blocks for Iterative Methods. SIAM, 1994.

9. Peter L. Bartlett. The sample complexity of pattern classification with neural networks: the size
of the weights is more important than the size of the network. IEEE Transactions on Information
Theory, 44(2):525–536, March 1998.

10. B. A. V. Bennett and M. D. Smooke. Local rectangular refinement with application to nonreacting
and reacting fluid flow problems. Journal of Computational Physics, 151:648–727, 1999.

11. S. Bhowmick, L. C. McInnes, B. Norris, and P. Raghavan. The role of multi-method linear solvers
in pde-based simulations. In P. M. A. Sloot, C.J. K. Tan, J. J. Dongarra, and A. G. Hoekstra,
editors, Lecture Notes in Computer Science, Computational Science and its Applications-ICCSA
2003, volume 2667, pages 828–839. Springer Verlag, 2003.

12. S. Bhowmick, P. Raghavan, L. McInnes, and B. Norris. Faster PDE-based simulations using robust
composite linear solvers. Future Generation Computer Systems, 20:373–386, 2004.

13. S. Bhowmick, P. Raghavan, and K. Teranishi. A combinatorial scheme for developing efficient com-
posite solvers. In P. M. A. Sloot, C.J. K. Tan, J. J. Dongarra, and A. G. Hoekstra, editors, Lec-
ture Notes in Computer Science, Computational Science- ICCS 2002, volume 2330, pages 325–334.
Springer Verlag, 2002.

14. Leo Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801–849, 1998.

15. Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classification and
Regression Trees. Wadsworth & Brooks, 1984.

16. Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,
September 1995.



ML in Selecting Linear Solvers 23

17. Jim Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine Petitet, Rich Vuduc, R. Clint
Whaley, and Katherine Yelick. Self adapting linear algebra algorithms and software. IEEE Proceed-
ings, 2004.

18. J. Dongarra and V. Eijkhout. Self adapting numerical algorithm for next generation applications.
International Journal of High Performance Computing Applications, 17(2):125–132, 2003.

19. Jack Dongarra and Victor Eijkhout. Self-adapting numerical software and automatic tuning of
heuristics. In Proceedings of the International Conference on Computational Science, June 2–4
2003, St. Petersburg (Russia) and Melbourne (Australia), Lecture Notes in Computer Science 2660,
pages 759–770. Springer Verlag, 2003.

20. Driven-Cavity. Nonlinear driven cavity and pseudotransient timestepping in 2d. http:

//www-unix.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-current/src/snes/examples/

tutorials/ex27.c.html.
21. Harris Drucker and Corinna Cortes. Boosting decision trees. In NIPS8, pages 479–485, 1996.
22. Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.
23. I.S. Duff, A.M. Erisman, and J.K. Rei. Direct Methods for Sparse Matrices. Clarendon Press, Oxford,

1986.
24. Victor Eijkhout and Erika Fuentes. A proposed standard for numerical metadata. submitted to

ACM Trans. Math. Software.
25. A. Ern, V. Giovangigli, D. E. Keyes, and M. D. Smooke. Towards polyalgorithmic linear system

solvers for nonlinear elliptic problems. SIAM J. Sci. Comput., 15, No 3:681–703, 1994.
26. Yoav Freund. Boosting a weak learning algorithm by majority. Information and Computation,

121(2):256–285, 1995.
27. Yoav Freund and Llew Mason. The alternating decision tree learning algorithm. In Proceedings of

the Sixteenth International Conference on Machine Learning, pages 124–133, 1999.
28. Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an

application to boosting. Journal of Computer and System Sciences, 55(1):119–139, August 1997.
29. Yoav Freund and Robert E. Schapire. A short introduction to boosting. Journal of Japanese Society

for Artificial Intelligence, 14(5):771–780, 1999.
30. Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: A statistical

view of boosting. The Annals of Statistics, 38(2):337–374, April 2000.
31. D. Gannon, R. Bramley, T. Stuckey, J. Balasubramanian J. Villacis, E. Akman, F. Berg, S. Diwan,

and M. Govindaraju. The linear system analyzer. In E.N. Houstis, J.R. Rice, E. Gallopoulos, and
R. Bramley, editors, Enabling Technologies for Computational Science. Kluwer:Dordrecht, 2000.

32. W.D. Gropp, D.E. Keyes, L.C. McInnes, and M.D. Tidriri. Globalized Newton-Krylov-Schwarz Algo-
rithms and Software for Parallel Implicit cfd. International Journal of High Performance Computing
Applications, 14:102–136, 2000.

33. C. T. Kelley and D. E. Keyes. Convergence analysis of pseudo-transient continuation. SIAM Journal
on Numerical Analysis, 35:508–523, 1998.

34. LCRC. Argonne National Laboratory Computing Project. http://www.lcrc.anl.gov/jazz/index.
php.

35. M3D-Home. http://w3.pppl.gov/$\sim$jchen/index.html.
36. L. McInnes, B. Norris, S. Bhowmick, and P. Raghavan. Adaptive sparse linear solvers for implicit

cfd using Newton-Krylov algorithms. Proceedings of the Second MIT Conference on Computational
Fluid and Solid Mechanics, June 17-20, 2003.

37. MLJava. http://seed.ucsd.edu/twiki/bin/view/Softtools/MLJavaPage.
38. N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen. How fast are nonsymmetric matrix iterations?

SIAM J. Matrix Anal. Appl., 13, No 3:778–795, 1992.
39. D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz. UCI repository of machine learning databases,

1998.
40. J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New York, 1999.
41. W. Park, E.V. Belova, G.Y. Fu, X. Z. Tang, H. R. Strauss, and L. E. Sugiyama. Plasma simulation

studies using multilevel physics models. Physics of Plasmas, 6(5):1796–1803, May 1999.
42. J. R. Quinlan. Bagging, boosting, and C4.5. In Proceedings of the Thirteenth National Conference

on Artificial Intelligence, pages 725–730, 1996.
43. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
44. Yousef Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company,, 1995.
45. Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227, 1990.



24 ML in Selecting Linear Solvers

46. Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new
explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651–1686,
October 1998.

47. SPOOLES. Sparse direct solver. www.netlib.org/linalg/spooles/spooles.2.2.html.
48. SuperLU. Sparse direct solver. crd.lbl.gov/∼xiaoye/SuperLU.
49. L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, November

1984.
50. Vladimir N. Vapnik. Statistical Learning Theory. Wiley, 1998.
51. I.H. Witten and E.Frank. Data Mining:Practical Machine Learning Tools and Techniques (second

edition). Morgan Kaufmann, 2005.


