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Abstract
The challenge for the development of next generation
software is the successful management of the complex
computational environment while delivering to the sci-
entist the full power of flexible compositions of the
available algorithmic alternatives. Self-Adapting Nu-
merical Software (SANS) systems are intended to meet
this significant challenge.

The process of arriving at an efficient numerical solu-
tion of problems in computational science involves nu-
merous decisions by a numerical expert. Attempts to au-
tomate such decisions distinguish three levels:

• Algorithmic decision;
• Management of the parallel environment;
• Processor-specific tuning of kernels.

Additionally, at any of these levels we can decide to
rearrange the user’s data.

In this paper we look at a number of efforts at the Uni-
versity of Tennessee that are investigating these areas.

1 Introduction
The increasing availability of advanced-architecture
computers is having a very significant effect on all
spheres of scientific computation, including algorithm
research and software development. In numerous areas
of computational science, such as aerodynamics (ve-
hicle design), electrodynamics (semiconductor device
design), magnetohydrodynamics (fusion energy device
design), and porous media (petroleum recovery), pro-
duction runs on expensive, high-end systems last for
hours or days, and a major portion of the execution time
is usually spent inside of numerical routines, such as for
the solution of large-scale nonlinear and linear systems

that derive from discretized systems of nonlinear par-
tial differential equations. Driven by the desire of sci-
entists for ever higher levels of detail and accuracy in
their simulations, the size and complexity of required
computations is growing at least as fast as the improve-
ments in processor technology. Unfortunately it is get-
ting more difficult to achieve the necessary high per-
formance from available platforms, because of the spe-
cialized knowledge in numerical analysis, mathematical
software, compilers and computer architecture required,
and because rapid innovation in hardware and systems
software rapidly makes performance tuning efforts ob-
solete. Additionally, an optimal scientific environment
would have to adapt itself dynamically to changes in the
computational platform – for instance, network condi-
tions – and the developing characteristics of the prob-
lem to be solve – for instance, during a time-evolution
simulation.

With good reason scientists expect their computing
tools to serve them and not the other way around. It
is not uncommon for applications that involve a large
amount of communication or a large number of irreg-
ular memory accesses to run at 10% of peak or less.
If this gap were fixed then we could simply wait for
Moore’s Law to solve our problems, but the gap is
growing. The challenge of closing this gap is exacer-
bated by four factors.

Scientific applications need to be tuned to extract near
peak performance even as hardware platforms change
underneath them. Unfortunately, tuning even the sim-
plest real-world operations for high performance usu-
ally requires an intense and sustained effort, stretch-
ing over a period of weeks or months, from the most
technically advanced programmers, who are inevitably
in very scarce supply. While access to necessary com-
puting and information technology has improved dra-
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matically over the past decade, the efficient application
of scientific computing techniques still requires levels
of specialized knowledge in numerical analysis, mathe-
matical software, computer architectures, and program-
ming languages that many working researchers do not
have the time, the energy, or the inclination to acquire.

Our goal in the SANS projects are to address the widen-
ing gap between peak performance of computers and
attained performance of real applications in scientific
computing.

Challenge 1: The complexity of modern machines and
compilers is so great that very few people know enough,
or should be expected to know enough, to predict the
performance of an algorithm expressed in a high level
language: There are too many layers of translation
from the source code to the hardware. Seemingly small
changes in the source code can change performance
greatly. In particular, where a datum resides in a deep
memory hierarchy is both hard to predict and critical to
performance.

Challenge 2: The speed of innovation in hardware and
compilers is so great that even if one knew enough to
tune an algorithm for high performance on a particu-
lar machine and with a particular compiler, that work
would soon be obsolete. Also, platform specific tuning
impedes the portability of the code.

Challenge 3: The number of algorithms, or even algo-
rithmic kernels in standard libraries [41] is large and
growing, too fast for the few experts to keep up with
tuning or even knowing about them all.

Challenge 4: The need for tuning cannot be restricted
to problems that can be solved by libraries where all
optimization is done at design time, installation time, or
even compile time. In particular sparse matrix computa-
tions require information about matrix structure for tun-
ing, while interprocessor communication routines re-
quire information about machine size and configuration
used for a particular program run. It may be critical to
use tuning information captured in prior runs to tune
future runs.

A SANS system comprises intelligent next generation
numerical software that domain scientists – with dis-
parate levels of knowledge of algorithmic and program-
matic complexities of the underlying numerical soft-
ware – can use to easily express and efficiently solve
their problem.

The following sections describe the various facets of

our effort.

• Generic Code Optimization GCO: a system for
automatically generating optimized kernels.

• LFC: software that manages parallelism of dense
linear algebra, transparently to the user.

• SALSA: a system for picking optimal algorithms
based on statistical analysis of the user problem.

• FT-LA: a linear algebra approach to fault toler-
ance and error recovery.

• Optimized Communication Library: optimal im-
plementations of MPI collective primitives that
adapt to the network properties and topology as
well as the characteristics (such as message size)
of the user data.

2 Structure of a SANS system
A SANS system has the following large scale building
blocks:

• Application
• Analysis Modules
• Intelligent switch
• Lower level libraries
• Database
• Modeler

We will give a brief discussion of each of these, and
the interfaces needed. Note that not all of the adaptive
systems in this paper have all of the above components.

2.1 The Application

The problem to be solved by a SANS system typically
derives from a physics, chemistry, et cetera application.
This application would normally call a library routine,
picked and parametrized by an application expert. Ab-
sent such an expert, the application calls the SANS rou-
tine that solves the problem.

For maximum ease of use, then, the API of the SANS
routine should be largely similar to the library call it
replaces. However, this ignores the issue that we may
want the application to pass application metadata to the
SANS system. Other application questions to be ad-
dressed relate to the fact that we may call the SANS
system repeatedly on data that varies only a little be-
tween instances. In such cases we want to limit the ef-
fort expended by the Analysis Modules.
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2.2 Analysis Modules

Certain kinds of SANS systems, for instance the ones
that govern optimized kernels or communication opera-
tions, need little dynamic, runtime, analysis of the user
data. On the other hand, a SANS system for numeri-
cal algorithms operates largely at runtime. For this dy-
namic analysis we introduce Analysis Modules into the
general structure of a SANS system.

Analysis modules have a two-level structure of cate-
gories and elements inside the categories. Categories
are mostly intended to be conceptual, but they can also
be dictated by practical considerations. An analysis ele-
ment can either be computed exactly or approximately.

2.3 Intelligent Switch

The intelligent switch determines which algorithm or
library code to apply to the problem. On different lev-
els, different amounts of intelligence are needed. For in-
stance, dense kernels such as in ATLAS [66] make es-
sentially no runtime decisions; software for optimized
communication primitives typically chooses between a
small number of schemes based on only a few charac-
teristics of the data; systems such as Salsa have a com-
plicated decision making process based on dozens of
features, some of which can be relatively expensive to
compute.

2.4 Numerical Components

In order to make numerical library routines more man-
agable, we embed them in a component framework.
This will also introduce a level of abstraction, as there
need not be a one-to-one relation between library rou-
tines and components. In fact, we will define two kinds
of components:

• ‘library components’ are uniquely based on li-
brary routines, but they carry a specification in
the numerical adaptivity language that describes
their applicability;

• ‘numerical components’ are based on one or
more library routines, and having an extended
interface that accomodates passing numerical
metadata.

This distinction allows us to make components cor-
responding to the specific algorithm level (‘Incom-
plete LU with drop tolerance’) and generic (‘precondi-
tioner’).

2.5 Database

The database of a SANS system contains information
that couples problem features to method performance.
While problem features can be standardized (this is nu-
merical metadata), method performance is very much
dependent on the problem area and the actual algorithm.

As an indication of some of the problems in defining
method performance, consider linear system solvers.
The performance of a direct solver can be character-
ized by the amount of memory and the time it takes,
and one can aim to optimize for either or both of them.
The amount of memory here is strongly variable be-
tween methods, and should perhaps be normalized by
the memory needed to store the problem. For iterative
solvers, the amount of memory is usually limited to a
small multiple of the problem memory, and therefore
of less concern. However, in addition to the time to so-
lution, one could here add a measure such as ”time to
a certain accuracy”, which is interesting if the linear
solver is used in a nonlinear solver context.

2.6 Modeler

The intelligence in a SANS system resides in two com-
ponents: the intelligent switch which makes the deci-
sions, and the modeler which draws up the rules that
the switch applies. The modeler draws on the database
of problem characteristics (as laid down in the meta-
data) to make rules.

3 Empirical Code Optimization
As CPU speeds double every 18 months following
Moore’s law[47], memory speed lags behind. Because
of this increasing gap between the speeds of proces-
sors and memory, in order to achieve high perfor-
mance on modern systems new techniques such as
longer pipeline, deeper memory hierarchy, and hy-
per threading have been introduced into the hardware
design. Meanwhile, compiler optimization techniques
have been developed to transform programs written
in high-level languages to run efficiently on modern
architectures[2, 50]. These program transformations in-
clude loop blocking[68, 61], loop unrolling[2], loop
permutation, fusion and distribution[45, 5]. To select
optimal parameters such as block size, unrolling factor,
and loop order, most compilers would compute these
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values with analytical models referred to as model-
driven optimization. In contrast, empirical optimization
techniques generate a large number of code variants
with different parameter values for an algorithm, for
example matrix mulplication. All these candidates run
on the target machine, and the one that gives the best
performance is picked. With this empirical optimization
approach ATLAS[67, 18], PHiPAC[8], and FFTW[29]
successfully generate highly optimized libraries for
dense, sparse linear algebra kernels and FFT respec-
tively. It has been shown that empirical optimization is
more effective than model-driven optimization[70].

One requirement of empirical optimization methodolo-
gies is an appropriate search heuristic, which automates
the search for the most optimal available implementa-
tion [67, 18]. Theoretically, the search space is infinite,
but in practice it can be limited based on specific in-
formation about the hardware for which the software is
being tuned. For example, ATLAS bounds NB (block-
ing size) such that 16 ≤ NB ≤ min(

√
L1,80), where

L1 represents the L1 cache size, detected by a micro-
benchmark. Usually the bounded search space is still
very large and it grows exponentially as the dimension
of the search space increases. In order to find optimal
cases quickly, certain search heuristics need to be em-
ployed. The goal of our research is to provide a general
search method that can apply to any empirical optimiza-
tion system. The Nelder-Mead simplex method[49] is a
well-known and successful non-derivative direct search
method for optimization. We have applied this method
to ATLAS, replacing the global search of ATLAS with
the simplex method. This section will show experimen-
tal results on four different architectures to compare this
search technique with the original ATLAS search both
in terms of the performance of the resulting library and
the time required to perform the search.

3.1 Modified Simplex Search Algorithm

Empirical optimization requires a search heuristic for
selecting the most highly optimized code from the large
number of code variants generated during the search.
Because there are a number of different tuning param-
eters, such as blocking size, unrolling factor and com-
putational latency, the resulting search space is multi-
dimensional. The direct search method, namely Nelder-
Mead simplex method [49], fits in the role perfectly.

The Nelder-Mead simplex method is a direct search
method for minimizing a real-valued function f (x) for

x∈Rn. It assumes the function f (x) is continuously dif-
ferentiable. We modify the search method according to
the nature of the empirical optimization technique:
• In a multi-dimensional discrete space, the value

of each vertex coordinate is cast from double pre-
cision to integer.

• The search space is bounded by setting f (x) =
∞ where x < l, x > u and l, u, and x ∈ Rn. The
lower and upper bounds are determined based on
hardware information.

• The simplex is initialized along the diagonal of
the search space. The size of the simplex is cho-
sen randomly.

• User defined restriction conditions: If a point vi-
olates the condition, we can simply set f (x) = ∞,
which saves search time by skipping code gener-
ation and execution of this code variant.

• Create a searchable record of previous execu-
tion timing at each eligible point. Since execution
times would not be identical at the same search
point on a real machine, it is very important to
be able to retrieve the same function value at the
same point. It also saves search time by not hav-
ing to re-run the code variant for this point.

• As the search can only find the local optimal per-
formance, multiple runs are conducted. In search
space of Rn, we start n+1 searches. The ini-
tial simplexes are uniformly distributed along the
diagonal of the search space. With the initial
simplex of the n+1 result vertices of previous
searches, we conduct the final search with the
simplex method.

• After every search with the simplex method, we
apply a local search by comparing performance
with neighbor vertices, and if a better one is
found the local search continues recursively.

3.2 Experiments with ATLAS

In this section, we briefly describe the structure of AT-
LAS and then compare the effectiveness of its search
technique to the simplex search method.

3.2.1 Structure of ATLAS

By running a set of benchmarks, ATLAS [67, 18] de-
tects hardware information such as L1 cache size, la-
tency for computation scheduling, number of registers
and existence of fused floating-point multiply add in-
struction. The search heuristics of ATLAS bound the
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global search of optimal parameters with detected hard-
ware information. For example, NB (blocking size) is
one of ATLAS’s optimization parameters. ATLAS sets
NB’s upper bound to be the minimum of 80 and square
root of L1 cache size, and lower bound as 16, and NB is
a composite of 4. The optimization parameters are gen-
erated and fed into the ATLAS code generator, which
generates matrix multiply source code. The code is then
compiled and executed on the target machine. Perfor-
mance data is returned to the search manager and com-
pared with previous executions.

ATLAS uses an orthogonal search [70]. For an opti-
mization problem:

min f (x1,x2, · · · ,xn)

Parameters xi (where 1 ≤ i ≤ n) are initialized with ref-
erence values. From x1 to xn, orthogonal search does
a linear one-dimensional search for the optimal value
of xi and it uses previously found optimal values for
x1,x2, · · · ,xn−1.

3.2.2 Applying Simplex Search to ATLAS

We have replaced the ATLAS global search with the
modified Nelder-Mead simplex search and conducted
experiments on four different architectures: 2.4 GHz
Pentium 4, 900 MHz Itanium 2, 1.3 GHz Power 4, and
900 MHz Sparc Ultra.

Given values for a set of parameters, the ATLAS code
generator generates a code variant of matrix multi-
ply. The code gets executed with randomly generated
1000x1000 dense matrices as input. After executing the
search heuristic, the output is a set of parameters that
gives the best performance for that platform. Figure 1
compares the total time spent by each of the search
methods on the search itself. The Itanium2 search time
(for all search techniques) is much longer than the
other platforms because we are using the Intel com-
piler, which in our experience takes longer to compile
the same piece of code than the compiler used on the
other platforms (gcc). Figure 2 shows the comparision
of the performance of matrix multiply on different sizes
of matrices using the ATLAS libraries generated by the
Simplex search and the original ATLAS search.

3.3 Generic Code Optimization

Current empirical optimization techniques such as AT-
LAS and FFTW can achieve good performance because

Figure 1: Search time

the algorithms to be optimized are known ahead of time.
We are addressing this limitation by extending the tech-
niques used in ATLAS to the optimization of arbitrary
code. Since the algorithm to be optimized is not known
in advance, it will require compiler technology to ana-
lyze the source code and generate the candidate imple-
mentations. The ROSE project[69, 54] from Lawrence
Livermore National Laboratory provides, among other
things, a source-to-source code transformation tool that
can produce blocked and unrolled versions of the input
code. Combined with our search heuristic and hardware
information, we can use ROSE to perform empirical
code optimization. For example, based on an automatic
characterization of the hardware, we will direct their
compiler to perform automatic loop blocking at varying
sizes, which we can then evaluate to find the best block
size for that loop. To perform the evaulations, we have
developed a test infrastructure that automatically gener-
ates a timing driver for the optimized routine based on
a simple description of the arguments.

The Generic Code Optimization system is structured as
a feedback loop. The code is fed into the loop proces-
sor for optimization and separately fed into the timing
driver generator which generates the code that actually
runs the optimized code variant to determine its execu-
tion time. The results of the timing are fed back into
the search engine. Based on these results, the search en-
gine may adjust the parameters used to generate the next
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code variant. The initial set of parameters can be esti-
mated based on the characteristics of the hardware (e.g.
cache size).

To compare the search results against the true optimum
performance, we ran an exhaustive search over both di-
mensions of our search space (block sizes up to 128
and unrolling up to 128). The code being optimized is a
naı̈ve implementation of matrix-vector multiply. In gen-
eral, we see the best results along the diagonal, but there
are also peaks along areas where the block size is evenly
divisible by the unrolling amount. The triangular area
on the right is typically low because when the unrolling
amount is larger than the block size, the unrolled por-
tion will not be used. After running for over 30 hours on
a 1.7 GHz Pentium M, the best performance was found
with block size 11 and unrolling amount 11. This code
variant ran at 338 Mflop/s compared to 231 Mflop/s for
the default version, using the same compiler.

Of course, due to the large amount of time required,
this kind of exhaustive search is not feasible especially
as new dimensions are added to the search space. Con-
sequently we are investigating the simplex method as a
way to find an optimal set of parameters without per-
forming an exhaustive search. The simplex search tech-
nique works the same in this application as it does when
applied to ATLAS except in this case we only have two
parameters. To evaluate the effectiveness of the simplex
search technique, we performed 10,000 runs and com-

pared the results with the true optimum found during the
exhaustive search. On average, the simplex technique
found code variants that performed at 294 Mflop/s, or
87% of the true optimal performance (338 Mflop/s).
At best, the simplex technique can find the true opti-
mum, but that only occurs on 8% of the runs. The worst
case was 273 Mflop/s, or 81% of the true optimum.
From a statistical point of view, the probability of ran-
domly finding better performance than the simplex av-
erage case (294 Mflop/s) is 0.079% and the probability
of randomly finding better performance than the sim-
plex worst case (273 Mflop/s) is 2.84%. While the sim-
plex technique generally results in a code variant with
less than optimal performance, the total search time is
only 10 minutes compared to over 30 hours for the ex-
haustive search.

4 LFC
The central focus is the LFC (LAPACK For Clusters)
software which has a serial, single process user in-
terface, but delivers the computing power achievable
by an expert user working on the same problem who
optimally utilizes the parallel resources of a cluster.
The basic premise is to design numerical library soft-
ware that addresses both computational time and space
complexity issues on the user’s behalf and in a man-
ner transparent to the user. The details for paralleliz-
ing the user’s problem such as resource discovery, se-
lection, and allocation, mapping the data onto (and off
of) the working cluster of processors, executing the
user’s application in parallel, freeing the allocated re-
sources, and returning control to the user’s process in
the serial environment from which the procedure began
are all handled by the software. Achieving optimized
software in the context described here is an N P -hard
problem [3, 15, 32, 33, 34, 37, 42]. Nonetheless, self-
adapting software attempts to tune and approximately
optimize computational procedures given the pertinent
information on the available execution environment.

4.1 Overview

Empirical studies [57] of computing solutions to linear
systems of equations demonstrated the viability of the
method finding that (on the clusters tested) there is a
problem size that serves as a threshold. For problems
greater in size than this threshold, the time saved by the
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self-adaptive method scales with the parallel application
justifying the approach.

LFC addresses user’s problems that may be stated in
terms of numerical linear algebra. The problem may
otherwise be dealt with one of the LAPACK [4] and/or
ScaLAPACK [9] routines supported in LFC. In partic-
ular, suppose that the user has a system of m linear
equations with n unknowns, Ax = b. Three common
factorizations (LU, Cholesky-LLT, and QR) apply for
such a system depending on properties and dimensions
of A. All three decompositions are currently supported
by LFC.

LFC assumes that only a C compiler, a Message Pass-
ing Interface (MPI) [26, 27, 28] implementation such
as MPICH [48] or LAM MPI [40], and some variant of
the BLAS routines, be it ATLAS or a vendor supplied
implementation, is installed on the target system. Target
systems are intended to be “Beowulf-like” [62].

4.2 Algorithm Selection Processes

ScaLAPACK Users’ Guide [9] provides the following
equation for predicting the total time T spent in one of
its linear solvers (LLT, LU, or QR) on matrix of size n
in NP processes [14]:

T (n,NP) =
C f n3

NP
t f +

Cvn2
√

NP
tv +

Cmn
NB

tm (1)

where:

• NP number of processes
• NB blocking factor for both computation and

communication
• t f time per floating-point operation (matrix-

matrix multiplication flop rate is a good starting
approximation)

• tm corresponds to latency
• 1/tv corresponds to bandwidth
• C f corresponds to number of floating-point oper-

ations
• Cv and Cm correspond to communication costs

The constands C f Cv and Cm should be taken from the
follwing table:

Driver C f Cv Cm
LU 2/3 3+1/4log2 NP NB(6+ log2 NP)
LLT 1/3 2+1/2log2 NP 4+ log2 NP
QR 4/3 3+ log2 NP 2(NB log2 NP +1)

The hard part in using the above equation is obtaining
the system-related parameters t f , tm, and tv indepently
of each other and without performing costly parameter
sweep. At the moment we are not aware of any reli-
able way of acquiring those parameters and thus we rely
on parameter fitting approach that uses timing informa-
tion from previous runs. Furthermore, with respect to
runtime software parameters the equation includes only
the process count NP and blocking factor NB. However,
the key to good performance is the right aspect ratio
of the logical process grid: the number of process rows
divided by the number of process columns. In heterge-
neous environments (for which the equation doesn’t ac-
count at all), choosing the right subset of processor is
crucial as well.

Lastly, the decision making process is influenced by the
follwing factors directly related to system policies that
define what is the goal of the optimal selection:
• resource utilization (throughput),
• time to solution (response time),
• per-processor performance (parallel efficiency).
Trivially, the owner (or manager) of the system is in-
terested in optimal resource utilization while the user
expects the shortest time to obtain the solution. Instead
of aiming at optimization of either the former (by max-
imizing memory utilization and sacrificing the total so-
lution time by minimizing the number of processes in-
volved) or the latter (by using all the available proces-
sors) a benchmarking engineer would be interested in
best floating-point performance.

4.3 Experimental Results

Figure 3 illustrates how the time to solution is influ-
enced by the aspect ratio of the logical process grid for
a range of process counts. It is clear that sometimes it
might be beneficial not to use all the available proces-
sors for computation (the idle processors might be used
for example for fault-tolerance purposes). This is espe-
cially true if the number of processors is a prime num-
ber which leads to a one-dimensional process grid and
thus very poor performance on many systems. It is un-
realistic to expect that non-expert users will correctly
make the right decisions in every such case. It is ei-
ther a matter of having expertise or relevant experimen-
tal data to guide the choice and our experiences sug-
gest that perhaps a combination of both is required to
make good decisions consistently. As a side note, with
respect to the experimental data, it is worth mentioning
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that the collection of data for Figure 3 required a num-
ber of floating point operations that would compute the
LU factorization of a square dense matrix of order al-
most three hundred thousand. Matrices of that size are
usually suitable for supercomputers (the slowest super-
computer on the Top500 [46] list that factored such a
matrix was on position 16 in November 2002).

Figure 4 shows the large extent to which the aspect ratio
of the logical process grid influences another facet of
numerical computation: per-processor performance of
the LFC parallel solver. The graphs in the figure shows
data for various numbers of processors (between 40
and 64) and consequently does not represent a func-
tion since, for example, ratio 1 may be obtained with 7
by 7 and 8 by 8 process grids (within the specified range
of number of processors). The figure shows perfor-
mance of both parallel LU decomposition using Gaus-
sian elimination algorithm and parallel Cholesky fac-
torization code. A side note on relevance of data from
the figure: they are only relevant for the LFC’ parallel
linear solvers that are based on the solvers from ScaLA-
PACK [9], they would not be indicative of performance
of a different solver, such as HPL [19] which uses dif-

ferent communication patterns and consequently be-
haves differently with respect to the process grid aspect
ratio.

5 SALSA
Algorithm choice, the topic of this section, is an in-
herently dynamic activity where the numerical content
of the user data is of prime importance. Abstractly we
could say that the need for dynamic strategies here
arises from the fact that any description of the input
space is of a very high dimension. As a corollary, we
can not hope to exhaustively search this input space,
and we have to resort to some form of modeling of the
parameter space.

We will give a general discussion of the issues in dy-
namic algorithm selection and tuning, present our ap-
proach which uses statistical data modeling, and give
some preliminary results obtained with this approach.
Our context here will be the selection of iterative meth-
ods for linear systems in the SALSA (Self-Adaptive
Large-scale Solver Architecture) system.
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5.1 Dynamic Algorithm Determination

In finding the appropriate numerical algorithm for a
problem we are faced with two issues:

1. There are often several algorithms that, poten-
tially, solve the problem, and

2. Algorithms often have one or more parameters of
some sort.

Thus, given user data, we have to choose an algorithm,
and choose a proper parameter setting for it.

Our strategy in determining numerical algorithms by
statistical techniques is globally as follows.

• We solve a large collection of test problems by
every available method, that is, every choice of
algorithm, and a suitable ‘binning’ of algorithm
parameters.

• Each problem is assigned to a class correspond-
ing to the method that gave the fastest solution.

• We also draw up a list of characteristics of each
problem.

• We then compute a probability density function
for each class.

As a result of this process we find a function pi(x̄)
where i ranges over all classes, that is, all methods, and
x̄ is in the space of the vectors of features of the input
problems. Given a new problem and its feature vector x̄,
we then decide to solve the problem with the method i
for which pi(x̄) is maximised.

We will now discuss the details of this statistical analy-
sis, and we will present some proof-of-concept numer-
ical results evincing the potential usefulness of this ap-
proach.

5.2 Statistical analysis

In this section we give a short overview of the way a
multi-variate Bayesian decision rule can be used in nu-
merical decision making. We stress that statistical tech-
niques are merely one of the possible ways of using
non-numerical techniques for algorithm selection and
parameterization, and in fact, the technique we describe
here is only one among many possible statistical tech-
niques. We will describe here the use of parametric
models, a technique with obvious implicit assumptions
that very likely will not hold overall, but, as we shall
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show in the next section, they have surprising applica-
bility.

5.2.1 Feature extraction

The basis of the statistical decision process is the ex-
traction of features from the application problem, and
the characterization of algorithms in terms of these fea-
tures. In [21] we have given examples of relevant fea-
tures of application problems. In the context of lin-
ear/nonlinear system solving we can identify at least
the following categories of features: structural features,
pertaining to the nonzero structure; simple quantities
that can be computed exactly and cheaply; spectral
properties, which have to be approximated; measures
of the variance of the matrix.

5.2.2 Training stage

Based on the feature set described above, we now en-
gage in an – expensive and time-consuming – train-
ing phase, where a large number of problems is solved
with every available method. For linear system solving,
methods can be described as an orthogonal combination
of several choices: the iterative method, the precondi-
tioner, and preprocessing steps such as scaling or per-
muting the system. Several of these choices involve nu-
merical parameters, such as the GMRES restart length,
or the number of ILU fill levels.

In spite of this multi-dimensional characterization of it-
erative solvers, we will for the purpose of this exposi-
tion consider methods as a singly-indexed set.

The essential step in the training process is that each nu-
merical problem is assigned to a class, where the classes
correspond to the solvers, and the problem is assigned
to the class of the method that gave the fastest solution.
As a result of this, we find for each method (class) a
multivariate density function:

p j(x̄) =
1

2π|Σ|1/2 e−(1/2)(x̄−µ̄)Σ−1(x̄−µ̄)

where x̄ are the features, µ̄ the means, and Σ the covari-
ance matrix.

Having computed these density functions, we can com-
pute the a posteriori probability of a class (‘given a
sample x̄, what is the probability that it belongs in
class j’) as

P(wi|x̄) =
p(x̄|w j)P(w j)

p(x̄)
.

We then select the numerical method for which this
quantity is maximised.

5.3 Numerical test

To study the behavior and performance of the statistical
techniques described in the previous section, we per-
form several tests on a number of matrices from dif-
ferent sets from the Matrix Market [44]. To collect the
data, we generate matrix statistics by running an ex-
haustive test of the different coded methods and precon-
ditioners; for each of the matrices we collect statistics
for each possible existing combination of: permutation,
scaling, preconditioner and iterative method.

From this data we select those combinations that con-
verged and had the minimum solving time (those com-
binations that didn’t converge are discarded). Each pos-
sible combination corresponds to a class, but since the
number of these combination is too large, we reduce the
scope of the analysis and concentrate only on the behav-
ior of the possible permutation choices. Thus, we have
three classes corresponding to the partitioning types:
Induced the default Petsc distribution induced by the

matrix ordering and the number of processors,
Parmetis , using the Parmetis [60, 51] package,
Icmk a heuristic [20] that, without permuting the sys-

tem, tries to find meaningful split points based on
the sparsity structure.

Our test is to see if the predicted class (method) is in-
deed the one that yields minimum solving time for each
case.

5.4 Results

These results were obtained using the following ap-
proach for both training and testing the classifier: con-
sidering that Induced and Icmk are the same except for
the Block-Jacobi case, if a given sample is not using
Block-Jacobi it is classified as both Induced and Icmk,
and if it is using Block-Jacobi then the distinction is
made and it is classified as Induced or Icmk. For the
testing set, the verification is performed with same cri-
teria, for instance, if a sample from the class Induced
is not using Block-Jacobi and is classified as Icmk by
the classifier, is still counted as a correct classification
(same for the inverse case of Icmk classified as In-
duced), however, if a sample from the Induced class is
classified as Induced and was using block-jacobi, it is
counted as a misclassification.
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The results for the different sets of features tested, are
as follows:

Features: non-zeros, bandwidth left and right,
splits number, ellipse axes

ParametricNon-Parametric
Induced Class: 70% 60%
Parmetis Class: 98% 73%
Icmk Class: 93% 82%

Features: diagonal, non-zeros, bandwidth left and right,
splits number, ellipse axes and center

Parametric Non-Parametric
Induced Class: 70% 80%
Parmetis Class: 95% 76%
Icmk Class: 90% 90%

It is important to note that although we have many pos-
sible features to choose from, there might not be enough
degrees of freedom (i.e. some of these features might
be corelated), so it is important to continue experimen-
tation with other sets of features. The results of these
tests might give some lead for further experimentation
and understanding of the application of statistical meth-
ods on numerical data.

These tests and results are a first glance at the behavior
of the statistical methods presented, and there is plenty
of information that can be extracted and explored in
other experiments and perhaps using other methods.

6 FT-LA
As the number of processors in today’s high perfor-
mance computers continue to grow, the mean-time-to-
failure of these computers is becoming significantly
shorter than the execution time of many current high
performance applications. Consequently, failures of a
node or a process becomes events to which numerical
software needs to adapt, preferably in an automatic way.

FT-LA stands for Fault Tolerant Linear Algebra and
aims at exploring parallel distributed numerical linear
algebra algorithms in the context of volatile resources.
The parent of FT-LA is FT-MPI [24, 31]. FT-MPI en-
ables an implementer to write fault tolerant code while
providing the maximum of freedom to the user. Based
on this library, it becomes possible to create more and
more fault-tolerant algorithms and software without the
need for specialized hardware; thus providing us the
ability to explore new areas for implementation and de-
velopment.

In this section, we only focus on the solution of sparse
linear systems of equations using iterative methods.
(For the dense case, we refer to [52], for eigenvalue
computation [11].) We assume that a failure of one of
the processors (nodes) results in the lost of all the data
stored in its memory (local data). After the failure, the
remaining processors are still active, another processor
is added to the communicator to replace the failed one
and the MPI environenment is sane. These assumptions
are true in the FT-MPI context. In the context of itera-
tive methods, once the MPI environment and the initial
data (matrix, right-hand sides) are recovered, the next
issue, which is our main concern, is to recover the data
created by the iterative method.

Diskless Checkpoint-Restart Technique

In order to recover the data from any of the processors
while maintaining a low storage overhead, we are using
a checksum approach to checkpointing.

Our checkpoints are diskless, in the sense that the
checkpoint is stored in memory of a processor and not
on a disk. To achieve this, an additional processor is
added to the environment. It will be referred as the
checkpoint processor and its role is to store the check-
sum. The checkpoint processor can be viewed as a disk
but with low latency and high bandwidth since it is lo-
cated in the network of processors. For more informa-
tion, we refer the reader to [13, 52] where special in-
terests are given on simultaneous failures and the scala-
bility of diskless checkpointing (the first reference uses
PVM, the second one FT-MPI).

The information is encoded in the following trivial way:
if there are n processors for each of which we want
to save the vector xk (for simplicity, we assume that
the size of xk is the same on all the processors), then
the checkpoint unit stores the checksum xn+1 such that
xn+1 = ∑i=1,...,n xi. If processor f fails, we can restore x f
via x f = xn+1 −∑i=1,...,n;i6= f xi. The arithmetic used for
the operations + and − can either be binary or floating-
point arithmetic.

When the size of the information is pretty large (our
case), a pipelined broadcasting algorithm enables the
computation of checksum to have almost perfect scal-
ing with respect to constant charge of the processors
(see [58] for a theoretical bound). For example, in Ta-
ble 1, we report experimental data on two different plat-
forms at the University of Tennessee: the boba Linux

11



4 8 16 32
boba 0.21 0.22 0.22 0.23
frodo 0.71 0.71 0.72 0.73

Table 1: Time (in seconds) for computing an 8-MByte
checksum on two different platforms for different num-
ber of processors, this time is (almost) independent of
the number of processors in this case since the size of
the messages is large enough

cluster composed of 32 dual processors Intel Xeon at
2.40 GHz with Intel e1000 interconnect, and the frodo
Linux cluster composed of 65 dual processors AMD
Opteron at 1.40 GHz with Myrinet 2000 interconnect.
The results in Table 1 attest to the good scalabiliy of the
checksum algorithm.

Fault Tolerance in Iterative Methods, a simple
example

In this Section, we present different choices and imple-
mentations that we have identified for fault tolerance in
iterative methods (see as well [11]).

c F strategy: Full checkpointing

In iterative methods like GMRES, k vectors are needed
to perform the kth iteration. Those vectors are un-
changed after their first initialization. The c F strategy
checkpoints the vectors when they are created. Since
this is not scalable in storage terms, we apply this idea
only to restarted methods, storing all vectors from a
restart point.

c R strategy: Checkpointing with rollback

Sometimes the kth iteration can be computed from the
knowledge of only a constant number of vectors. This
is the case in three-term methods such as CG, or in
restarted GMRES if we store the vectors at a restart
point. The c R strategy checkpoints the vectors of a
given iteration only from times to times. If a failure
happens then we restart the computation from the last
checkpointed version of those vectors.

l: lossy strategy

An alternative strategy to checkpoint useful in the con-
text of iterative methods is the lossy strategy. Assuming
that no checkpoint of the dynamic variables has been

performed and a failure occurs, the local data of the ap-
proximate solution before failure x(old) is lost on a pro-
cessor; however, it is still known on all other processors.
Thus one could create a new approximate solution from
the data on the other processors. In our example, this is
done by solving the local equation associated with the
failed processor. If Ai, j represents the sub-matrix which
rows are stored on processor i and with column indexes
corresponding to the rows stored on the processor j, x j
is the local part of the vector x stored on the processor
j, and if processor f fails then we propose to construct
a new approximate solution x(new) via

x(new)
j = x(old)

j for j 6= f

x(new)
f = A−1

f , f (b f − ∑
j 6= f

A f , jx
(old)
j ). (2)

If x(old) was the exact solution of the system, Equa-
tion (2) constructs x(new)

f = x(old)
f ; the recovery of x is

exact. In general the failure happens when x(old) is an
approximate solution, in which case x(new)

f is not exactly

x(old)
f . After this recovery step, the iterative methods is

restarted from x(new).

The lossy approach is strongly connected to the Block
Jacobi algorithm. Indeed, a failure step with the lossy
approach is a step of the Block Jacobi algorithm on
the failed processor. Related work by Engelmann and
Geist [22] proposes to use the Block Jacobi itself as an
algorithm that is robust under processor failure. How-
ever, the Block Jacobi step can be performed for data
recovery, embedded in any solver. Thus the user is free
to use any iterative solver, in particular Krylov methods
that are known to be more robust than the Block Jacobi
method.

Experimental Results

In this Section, we provide a simple example of the use
of these three strategies (c R, c F and lossy) in the con-
text of GMRES. The results are reported in Table 2.
The different lines of Table 2 correspond to: the num-
ber of iterations to converge (# iters), the time to solu-
tion (TWall), the time of the checkpoint (Tchkpt), the time
lost in the rollback (TRollback), the time for the recovery
(TRecov), the time for recovering the MPI environment
(TI), the time for recovering the static data (TII) and
finally the time for recovering the dynamic data (TIII).
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Fault-tolerant Strategy
without failure failure at step 10

los. c F c R los. c F c R
# iters 18 18 18 18 18 28
TWall 7.98 8.43 8.15 14.11 13.65 16.00
TChkpt 0.52 0.00 0.52 0.00

TRollback 2.29
TRecov 5.50 5.19 5.15

TI 1.05 1.10 1.11
TII 3.94 3.94 3.94
TIII 0.35 0.13 0.01

Table 2: Comparison of the checkpoint fault-tolerant
algorithm and the lossy fault-tolerant algorithm, times
are given in seconds, GMRES(30) with Block Jacobi
preconditioner with matrix stomach from Matrix Mar-
ket [10] of size n = 213,360 on 16 processors.

For this experiment, we shall have the following identi-
ties:

TWall = TWall(lossy)+Tchkpt +TRollback +TRecov,

TRecov = TI +TII +TIII,

TII and TIII are independent of the recovery strategy.

The best strategy here is c F. In a general case the best
strategy depends on the methods used. For example, if
the matrix is block diagnal dominant and the size of the
restart is large then the lossy strategy is in general the
best; for small restart size, then c R is in general bet-
ter. More experiments including eigenvalue computa-
tion can be found in [11].

FT-LA provides several implementation of fault-
tolerant algorithm for numerical linear algebra algo-
rithm, this enables the program to survive failures by
adapting itself to the fault and restart from a coherent
state.

7 Communication
Previous studies of application usage show that the
performance of collective communications are critical
to high-performance computing (HPC). Profiling study
[55] showed that some applications spend more than
eighty percent of a transfer time in collective opera-
tions. Given this fact, it is essential for MPI imple-
mentations to provide high-performance collective op-
erations. However, collective operation performance is

often overlooked when compared to the point-to-point
performance. A general algorithm for a given collective
communication operation may not give good perfor-
mance on all systems due to the differences in architec-
tures, network parameters and the buffering of the un-
derlying MPI implementation. Hence, collective com-
munications have to be tuned for the system on which
they will be executed. In order to determine the op-
timum parameters of collective communications on a
given system the collective communications need to be
modeled effectively at some level as exhaustive testing
might not produce meaningfull results in a reasonable
time as system sizes increase.

7.1 Collective operations, implementations and
tunable parameters

Collective operations can be classified as either one-
to-many/many-to-one (single producer or consumer) or
many-to-many (every participant is both a producer and
a consumer) operations. These operations can be gener-
alized in terms of communication via virtual topologies.
Our experiments currently support a number of these
virtual topologies such as: flat-tree/linear, pipeline (sin-
gle chain), binomial tree, binary tree, and k-chain tree
(K fan out followed by K chains). Our tests show that
given a collective operation, message size, and number
of processes, each of the topologies can be beneficial for
some combination of input parameters. An additional
parameter that we utilize is segment size. This is the
size of a block of contiguous data that the individual
communications can be broken down into. By breaking
large single communications into smaller communica-
tions and scheduling many communications in parallel
it is possible to increase the effiecency of any underly-
ing communication infastructure. Thus for many oper-
ations we need to specify both parameters; the virtual
topology and the segment size. Figure 5 shows how
many crossover points between different implementa-
tion can exist for a single collective operation on a small
number of nodes when finding the optimal (faster im-
plementation).1 The number of crossovers demonstrates
quite clearly why limiting the number of methods avail-
able per MPI operation at runtime can lead to poor per-
formance in many instances across the possible usage
(parameter) range. The MPI operations currently sup-
ported within our various frameworks include; barrier,
broadcast, reduce, allreduce, gather, alltoall and scatter
operations.

1. Note the logrithmic scale.

13



Figure 5: Multiple Implementations of the MPI Reduce
Operation on 16 nodes

7.2 Exhaustive and directed searching

Simple, yet time consuming method to find an optimal
implementation of an individual collective operation is
to run an extensive set of tests over a parameter space
for the collective on a dedicated system. However, run-
ning such detailed tests even on relatively small clus-
ters, can take a substantial amount of time [65]. Tuning
exhaustively for eight MPI collectives on a small (40
node) IBM SP-2 upto message sizes of one MegaByte
involved approximately 13000 individual experiments,
and took 50 hours to complete. Even though this only
needed to occur once, tuning all of the MPI collectives
in a similar manner would take days for a modaratly
sized system or weeks for a larger system.

Finding the optimal implementation of any given col-
lective can be broken down into a number of stages. The
first stage being dependent on message size, number of
processors and MPI collective operation. The secondary
stage is an optimization at these parameters for the cor-
rect method (topology-algorithm pair) and segmenta-
tion size. Reducing the time needed for running the ac-
tual experiments can be achieved at many different lev-
els, such as not testing at every point and interpolat-
ing results. i.e. testing 8, 32, 128 processes rather than
8, 16, 32, 64, 128 etc. Additionally using instrumented
application runs to build a table of only those collective
operations that are required, i.e. not tuning operations
that will never be called, or are called infrequently. We
are currently testing this instrumentation method via a
newly developed profiling interface known as the Scal-

Figure 6: Multiple Implementations of the MPI Scatter
operation on 8 nodes for various segmentation sizes

able Application Instrumention System (SAIS).

Another method used to reduce the search space in
an intelligent manner is to use traditional optimization
techniques such as gradient decent with domain knowl-
edge. Figure 6 shows the performance of four different
methods for implementing an 8 processor MPI Scatter
for 128 KBytes of data on the UltraSPARC cluster when
varying the segmentation size. From the resulting shape
of the performance data we can see that the optimal seg-
mentation size occurs for larger sizes, and that tests of
very small segmentation sizes are very expensive. By
using various gradient decent methods to control run-
time tests we can reduce the time to find the optimal
segmentation size from 12613 seconds and 600 tests to
40 seconds and just 90 tests [59]. Thus simple methods
can still allow semi-exhaustive testing in a reasonable
time.

7.3 Communication modelling

There are many parallel communicational models that
predict performance of any given collective operation
based on standardizing network and system parame-
ters. Hockney [35], LogP [17], LogGP [1], and PLogP
[38] models are frequently used to analyze parallel
algorithm performance. Assessing the parameters for
these models within local area network is relatively
straightforward and the methods to approximate them
have already been established and are well understood
[16][38]. Thakur et al. [63] and Rabenseifner et al.
[56] use Hockney model to analyze the performance
of different collective operation algorithms. Kielmann
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et al. [39] use PLogP model to find optimal algorithm
and parameters for topology-aware collective opera-
tions incorporated in the MagPIe library. Bell et al. [6]
use extensions of LogP and LogGP models to evaluate
high performance networks. Bernaschi et al. [7] analyze
the efficiency of reduce-scatter collective using LogGP
model. Vadhiyar et al. [65][59] used a modified LogP
model which took into account the number of pending
requests that had been queued. The most important fac-
tor concerning communication modelling is that the ini-
tial collection of (point to point communication) param-
eters is usually performed by executing a microbench-
mark that takes seconds to run followed by some com-
putation to calculate the time per collective operation
and thus is much faster than exhaustive testing. Once a
system has been parameterized in terms of a communi-
cation model we then can build a mathematical model
of a particular collective operation as shown in [36].

Experiments testing these models on a 32 node cluster
for the MPI barrier operation using MPICH2 are shown
in figure 7. As can be clearly seen, none of the models
produce perfect results but do allow a close approxima-
tion to the gross performance of the actual implementa-
tions. Figure 8 shows the normalised error between the
exhaustively found optimal implementation for a broad-
cast operation and the time for the optimal operation
as predicted using the LogP/LogGP parameter mod-
els. Tests were conducted under FT-MPI 1.2 [23]. As
can be seen the models accurately predicted the time to
completion of the broadcast for most message sizes and
node counts except for larger node counts when sending
smaller measages.

7.4 Collective communication status and future
work

Current experiments comparing both the exhaustively
tested collective operations and the modelled opera-
tions have shown that the choice of the wrong imple-
mentation of a collective communication can greatly re-
duce application performance, while the correct choice
can be orders of magnitude better. Currently exhaustive
testing is the only sure way to find the absolute opti-
mal combination of parameters that make the optimal
implementation. Finding these values exhaustively for
anything other than a very small system or a very con-
strained (and repetative application) is not practical in
terms of time to examine the complete search space. We
have presented several methods used to reduce or elim-
inate this search space. Overall we have found that both

Figure 7: Measured verses modelled MPI Barrier Oper-
ation based on recursive doubling

Figure 8: Error (colour) between the exhaustively mea-
sured optimal implementation verses implementation
choosen using values from the LogP/LogGP modelled
broadcast operations
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targeted exhaustive tuning and modelling each have
their place depending on the target applications and sys-
tems. Although modelling provides the fastest solution
to deciding which implementation of a collective oper-
ation to use, it can still choose a very incorrect result
for large node counts on small message sizes, while on
larger message sizes it appears very accurate. This is
encouraging as the large message sizes are the ones that
are impractical to test exhaustively whereas the small
message sizes can be intelligently tested in a reasonable
time. Thus a mixure of methods will still be used un-
til such times as the collective communication models
become more accurate for a wider range of parameters
such as node count and data size.

8 Related Work
We list here, briefly, a number of existing projects and
their relations to our SANS systems.

The University of Indiana’s Linear System Ana-
lyzer [43] (LSA) is building a problem solving en-
vironment (PSE) for solving large, sparse, unstructured
linear systems of equations. It differs from our pro-
posed systems in that it mostly provides a testbed for
user experimentation, instead of a system with intelli-
gence built in. A proposed LSA intelligent component
(www.extreme.indiana.edu/pseware/lsa/LSAfuture.html)
is more built on Artificial Intelligence techniques than
numerical analysis.

The TUNE project [64] seeks to develop a toolkit
that will aid a programmer in making programs more
memory-friendly.

The Berkeley projects PHIPAC, Sparsity, BeBop tar-
get optimization of the sparse kernels. Mostly, they use
tiling of the sparse matrix to get more effcient opera-
tions by the use of small dense blocks. This approach
is also used in AcCELS [12]. These operations partly
static, partly dynamic, since they depend on the spar-
sity pattern of the runtime data.

FFTW [30, 25] is a very successful package that tunes
the Fast Fourier operations to the user architecture.

An interesting project that combines ideas of dynamic
optimization and low-level kernel optimization is Spi-
ral [53] which generates optimal implementations of
DSP algorithms.

9 Conclusion
The emergence of scientific simulation as a pillar of
advanced research in many fields is adding new pres-
sure to the demand for a method of rapidly tuning soft-
ware for high-performance on a relentlessly changing
hardware base. Driven by the desire of scientists for
ever higher levels of detail and accuracy, the size and
complexity of computations is growing at least as fast
as the improvements in the processor technology, so
that applications must continue to extract near peak
performance even as the hardware platforms change
underneath them. The problem is that programming
these applications is hard and optimizing them for high-
performance is even harder.

Speed and portability are conflicting objectives in the
design of scientific software. One of the main obsta-
cles to the efficient solution of scientific problems is the
problem of tuning software, both to the available archi-
tecture and to the user problem at hand.

A SANS system can dramatically improve the ability
of computational scientists to model complex, interdis-
ciplinary phenomena with maximum efficiency and a
minimum of extra-domain expertise. SANS innovations
(and their generalizations) will provide to the scientific
and engineering community a dynamic computational
environment in which the most effective library compo-
nents are automatically selected based on the problem
characteristics, data attributes, and the state of the grid.

Our efforts together for others in the community for
obtaining tuned high-performance kernels, and for au-
tomatically choosing suitable algorithms holds great
promise for today high-performance systems as well as
future systems.
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