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Abstract— This article describes how to accelerate the con-
vergence of Preconditioned Conjugate Gradient (PCG) type
eigensolvers for the computation of several states around the
band gap of colloidal quantum dots. Our new approach uses the
Hamiltonian from the bulk materials constituent for the quantum
dot to design an efficient preconditioner for the folded spectrum
PCG method. The technique described shows promising results
when applied to CdSe quantum dot model problems. We show
a decrease in the number of iteration steps by at least a factor
of 4 compared to the previously used diagonal preconditioner.

I. INTRODUCTION

Current nanotechnology advances allow for the lab synthesis
of tiny crystals ranging from a few hundred to a few thousand
atoms in size called quantum dots (QDs). The quantum dot’s
electronic properties strongly depend on their shape and size.
Therefore, by designing QDs of proper shape and size one
can specifically tune their electronic properties which enables
remarkable applications. The mathematical simulation of the
physical system serves as an important tool to help the un-
derstanding of observed phenomena and can also guide future
experimental research. In this respect, the demand to inves-
tigate more complex systems of increasingly larger numbers
of atoms requires significant methodological improvements to
make our current computational algorithms scalable.

The simulation of quantum dots is based on first-principles
electronic structure calculations which are typically carried
out by minimizing the quantum-mechanical total energy with
respect to its electronic and atomic degrees of freedom. Under
various assumptions and simplifications [1], [12], the elec-
tronic part of this minimization problem becomes equivalent
to solving the single particle Schrödinger-type equations

Ĥψi(r) = εiψi(r), (1)

Ĥ = −
1

2
∇2 + V

where Ĥ represents the Hamiltonian of the system, ψi(r)
denotes the single particle wave function with energy εi and
V is the potential of the system. The wave functions are most
commonly expanded in plane-waves (Fourier components) up
to some cut-off energy. This results in a discretized version of
equation (1).

In the approach used in Parallel Energy SCAN (PESCAN)
developed by L-W. Wang and A. Zunger [20], [8], a semi-
empirical potential or a charge patching method [19] is used
to construct V and only some eigenstates of interest around a
given energy level Eref are calculated, allowing the study of
large nanosystems (up to a million atoms). In its discretized
form, the Hamiltonian matrix is Hermitian with dimension
equal to the number of Fourier components used to expand the
wave functions. Its eigenvalues are real, and the eigenvectors
can be chosen to be orthonormal.

In the context of the Self-Consistent Field iteration [13],
[14], a large number of eigenstates of (1) need to be computed,
see for example [16]. On the other hand, there are situations
where only a small number of eigenstates of (1) are relevant. In
semiconductor quantum dots, the spectrum of the Hamiltonian
has an energy gap. Of particular interest to physicists are a
few, say 4 to 10, of the interior eigenvalues on either side
of the gap which determine many of the electronic properties
of the system. Due to its large size, the Hamiltonian is never
explicitly computed. The kinetic energy part is represented
in Fourier space where it is diagonal, and the potential
energy part is evaluated in real space so that the number of
calculations used to construct the matrix-vector product scales
as n logn rather than n2 where n is the dimension of H .
Three-dimensional FFTs are used to move between Fourier
and real space. H is therefore available only implicitly, as a
procedure for computing the matrix-vector product Hx for
a given vector x. This requires a matrix free eigensolver.
Finally, repeated eigenvalues (degeneracies) due to physical
symmetries are possible in the systems that we consider.

In this paper, we study how to accelerate the Preconditioned
Conjugate Gradient (PCG) eigensolver available in the PES-
CAN package [8]. The PCG method has been proven to be
efficient and practical for the physical problems that we are
solving [20].

To find interior eigenvalues close to Eref with the PCG al-
gorithm, we use a spectral transformation, the folded spectrum
method [21]. The interior eigenvalue problem is transformed
to find the smallest eigenvalues of

(H −Eref I)
2x = µx, (2)

see Figure 1, top. A well-known drawback of this approach is



that the transformation in general clusters the eigenvalues of
interest which decreases the rate of convergence of PCG.

Because of these difficulties, the choice of the right precon-
ditioner for PCG is crucial to accelerate the convergence. This
is a field of active research, see [9]. Our contribution is the
development of a new preconditioner, based on bulk material
properties, that improves the convergence of PCG.

Fig. 1. Illustration of spectral transformations for the interior eigenvalue
problem. Comparison of folded spectrum (top) and shift and invert (bottom).
Shown are discrete spectral values of a matrix on the x-axis and the discrete
spectrum of the transformed matrix on the y axis. The y-axes intersects x at
the point of interest Eref .

The rest of the paper is organized as follows. In Section
II we explain the relationship between colloidal quantum dot
and bulk band (BB) structure. The Preconditioned Conjugate
Gradient (PCG) method is explained in Section III. Next, in
Section IV, we show how to use bulk band information in
the derivation of BB-type preconditioners for CG. Section V
summarizes our computational results. Finally, in Section VI,
we give conclusions and some possibilities to further extend
this work.

II. QUANTUM DOT AND BULK BAND STRUCTURE

The properties of ideal bulk systems such as crystals are
well understood by material scientists. These so-called Bloch
states can be computed relatively cheaply because only a few
atoms are sufficient to describe the periodic crystal structure.

In contrast, quantum dots represent more complicated phys-
ical objects where bulk materials constitute the interior and
vacuum the exterior. They can consist of thousands of atoms.
However, the key observation on which we base our approach

is that for large enough systems, the converged quantum dot
states around the band gap have a small angle to the subspace
defined by the corresponding bulk system states. Thus, the
information on the properties of a bulk system can be used
to guide the computation of a quantum dot consisting of bulk
material [22]. This relationship is depicted in Figure 2.
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Fig. 2. A supercell with a large quantum dot inside vacuum on the left, a
primary cell of a crystal (right).

A. Periodic systems

We describe the structure of the solution of the periodic
bulk system as given by Bloch’s theorem [7].

1) Bloch’s theorem: We consider a system with periodicity
A3. The periodicity of the bulk in terms of this crystal unit
corresponds to a periodic potential satisfying

V (r +A) = V (r). (3)

Bloch’s theorem states that the eigenvectors (wave functions)
of the Hamiltonian H are of the form

Ψnk(r) = unk(r)eikr , unk(r +A) = unk(r). (4)

We denote the corresponding eigenvalues (energies) by Enk.
In the above theorem, k is a priori arbitrary. For any k,

eigenpairs n = 1, 2, . . . can be found. The convention of two
indexes n and k is physically motivated.

2) Periodicity of the primary cell and the supercell solution:
Let’s denote by a the size of the primary cell, and by na the
size of the supercell. For any given k, the Fourier expansion
of the Bloch solution

unk =
∑
G

cnGe
iGr yields (5)

Ψnk(r) =
∑
G

cnGe
i(G+k)r. (6)

The admissible Gs are determined by the periodicity re-
quirement for unk. Namely, only those Fourier components
are allowed that have periodicity a, i.e

eiG(r+a) = eiGr ⇔ G =
2π

a
j, j = 1, 2, . . . (7)



In three dimensions, the set of G vectors becomes the G-grid
(lattice) of all these G3. We call the space

span{Ψnk, G-admissible}

the BB space, and denote it by SBB .
The same argument of periodicity applied to the supercell

requires that the Fourier expansion of the supercell solution is
of the form

Ψ(r) =
∑

q

cqe
iqr, where (8)

eiq(r+na) = eiqr ⇔ q =
2π

na
j, j = 1, 2, . . . . (9)

Similarly to the G-grid, the set of admissible q-vectors is called
q-grid. We denote the space

span{Ψ, q-admissible}

by S.

B. Bloch solutions on the q-grid and energy cutoff

The BB-based preconditioners involves transfers (’prolonga-
tions’/restrictions) between the G and q-grids. To make these
operations efficient we require that SBB ⊂ S, i.e. the G-grid
needs to ’fit’ onto the q-grid. For this, we choose k to satisfy

G+ k = q. (10)

For complexity reasons, the expansion (8) is truncated. Only
the components inside the Ecut sphere (the set of q-s such that
|q| < Ecut) are taken into account, a saving of a factor of about
8.

Ψ(r) =
∑

q,|q|<Ecut

cqe
iqr. (11)

For the Bloch solution (6), a restriction to the same Ecut

sphere using (10) yields

Ψnk(r) =
∑

G,|G|<Ecut

cnGe
i(G+k)r, (12)

with the k from the so-called first Brillouin zone.

The relationship between the different grids/Fourier compo-
nents is depicted on Figure 3.

C. The HBB operator

We define HBB to be the Hamiltonian stemming from the
discretization of the Schrödinger’s equation for a bulk system.
Following the notations in Subsection II-A.2 the eigenfunc-
tions of HBB are Ψnk(r) with corresponding energies Enk.
It follows that for x(r) ∈ SBB , and in particular for

x(r) =
∑
n,k

xiΨnk(r),

we have
HBB x(r) ≡

∑
n,k

Enk xiΨnk(r). (13)

G

Ecut

q = G + k 

Fig. 3. The G-grid embedded into the q-grid.

H−1
BB , and in particular

H̃−1
BB ≡ (HBB −Eref I)

−2

will be of interest in defining the new preconditioners in
Section IV. The product of these operators with x(r) can be
expressed correspondingly as

H−1
BB x(r) =

∑
n,k

E−1
nk xiΨnk(r) (14)

and

H̃−1
BB x(r) =

∑
n,k

(Enk −Eref )−2 xiΨnk(r). (15)

We first note that the pairs Ψnk(r), Enk can be easily
precomputed. Second, we define the L2 projection QT of
functions R(r) ∈ S to SBB (q-grid to G-grid) by

QTR(r) =
∑
n,k

Ψnk(r)

∫
unk(r′)e−ik·r′

R(r′) dr′(16)

≡
∑
n,k

νnkΨnk(r), (17)

and note that this can be efficiently computed in the Fourier
space. It follows that quantities like H−1

BBQ
TR(r) can be

efficiently computed as well.
We denote by Q the prolongation operator from SBB to S.

Since SBB ⊂ S this prolongation operator is the identity. We
note that in matrix notations though the prolongation is the
transpose of the corresponding restriction matrix.

III. THE PRECONDITIONED CG (PCG) ALGORITHM

The PCG method [20] is the original method used in
ESCAN (see the references in [10] and also [12], [3], [2]).
It is described in Table I.

The algorithm successively minimizes the Rayleigh quotient
function ρ(xi) = (xH

i Axi)/(x
H
i xi), where the (scaled)

gradient is given by ∇ρ(xi) = Axi − xiρ(xi).



1 do i = 1, niter
2 do m = 1, numEvals
3 orthonormalize X(m) to X(1 : m− 1)
4 ax = A X(m)
5 do j = 1, nline
6 λ(m) = X(m) · ax
7 if (||ax− λ(m) X(m)||2 < tol .or.

j == nline) exit

8 rj+1 = (I − X(m) X(m)H) ax

9 β =
rj+1·Prj+1

rj·Prj

10 dj+1 = −P rj+1 + β dj
11 dj+1 = (I − X(m)X(m)H)dj+1

12 γ = ||dj+1||
−1
2

13 θ = 0.5 |atan
2 γ dj+1·ax

λ(m)−γ2 dj+1·A dj+1
|

14 X(m) = cos(θ) X(m) + sin(θ) γ dj+1

15 ax = cos(θ) ax + sin(θ) γ A dj+1

16 enddo

17 enddo

18 [X, λ] = Rayleigh − Ritz on span{X}
19 enddo

TABLE I
THE PRECONDITIONED CONJUGATE GRADIENT (PCG) ALGORITHM FOR

FINDING THE numEvals SMALLEST EIGENVALUES OF THE OPERATOR A.
WHEN COMPUTING THE SMALLEST EIGENVALUES, THE METHOD IS

DIRECTLY APPLIED TO H . OTHERWISE, A REPRESENTS THE FOLDED

MATRIX (H − Eref I)2 IN THE INTERIOR EIGENVALUE PROBLEM. FOR A

DISCUSSION OF PRECONDITIONERS P , SEE SECTION IV.

The smallest eigenvalue λ of the Hermitian matrix A ≡
(H−Eref I)

2 (also the eigenvalue of H closest to the reference
point Eref ) minimizes the Rayleigh Quotient, that is

λ = arg min
x6=0

ρ(x) ≡ ρ(xi) = (xH
i Axi)/(x

H
i xi). (18)

From a current iterate xj and a descent direction dj , the
method finds the angle

θk = arg min ρ(xj+1) ≡ ρ(xj cos θj + dj sin θj). (19)

The descent direction is given by dj = −∇ρ(xj) + βjdj−1,
see [10]. A preconditioner P can be used to influence the
choice of the descent direction via

dj = −P∇ρ(xj) + βjdj−1. (20)

We apply the algorithm in a blocked form where the mini-
mization is performed on a set of vectors Xi. After a number
of band-by-band iterations, the Rayleigh-Ritz procedure is in-
voked to compute the best approximations from the subspace,
see also [11].

IV. PRECONDITIONERS FOR THE NONLINEAR CG
ALGORITHM

We apply the term preconditioning for eigensolvers in the
sense suggested by A. Knyazev in [9], [18]. Our precondition-
ers are designed to approximate H−1 in the case of computing
the smallest eigenvalues of the discrete Hamiltonian, and to
approximate (H −Eref I)

−2 in the case of solving the folded

spectrum problem (2). The preconditioners, as described be-
low, are applied to the preconditioned CG method, as briefly
described in Section III.

A. The previously used preconditioner

The preconditioner that was previously used in ESCAN is
diagonal. It is applied in the Fourier space as

P = D ≡ (I + (−
1

2
∇2 + Vavg −Eref )/Ek)2

where − 1
2∇

2 is the Laplacian (diagonal in the Fourier space),
Eref is the shift used in the folded spectrum, Vavg is the
average potential and Ek is the average kinetic energy of a
given initial approximation of a wave function ψinit. See [21]
for more information.

B. New BB-type preconditioners

We defined several preconditioners based on the HBB

operator. We define them as the product of an opera-
tor/preconditioner P over a current iteration residual R. The
most intuitive one is to first decompose R into its SBB and
S⊥

BB components, i.e. QQTR and R − QQTR, and second
precondition the SBB component with H−1

BB and the rest with
a diagonal preconditioner D−1, i.e.

PR ≡ QH−1
BBQ

TR+D−1(R −QQTR). (21)

We note that this preconditioner is not positive definite and that
there haven’t been any studies (as far as we are aware) in the
literature on whether one should use symmetric and positive
definite or indefinite preconditioners for hermitian eigenvalue
problems.

We use the nesting of our spaces SBB ⊂ S, and follow
the ideas from multigrid preconditioners for linear systems
(see for example [5], [4]) to define two other preconditioners.
Namely, these are an additive and a multiplicative ’pseudo’
2-level preconditioners. We define the additive one as

PR ≡ w QH−1
BBQ

T R+D−1R, (22)

where w is a scaling parameter taken to be the inverse of the
maximum eigenvalue of QH−1

BBQ
T H .

The multiplicative version is defined as

r1 = D−1R (23)
r2 = r1 + w QH−1

BBQ
T (R −Hr1) (24)

PR ≡ r2 +D−1(R−Hr2), (25)

where w is again (as above)

w = λ−1
max(QH−1

BBQ
T H).

V. NUMERICAL RESULTS

A numerical motivation of why the new preconditioners will
efficiently accelerate the computation is given first by the fact
that the converged eigenvectors sought lie almost entirely in
the SBB space. For the quantum dot simulations considered
below for example the angles between the converged solutions
and the SBB space are less than 1 degree. Second, testing the



method on bulk problems shows speedups of the computation,
compared with just diagonal preconditioning, of close to an
order of magnitude in terms of reduced number of iterations.
This is our first type of tests in validating the efficiency of
the new preconditioners (described in Subsection V-A). The
second test-type is on quantum dot simulations, described in
Subsection V-B.
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Fig. 4. Convergence histories for test system 1 (top) and 2 (bottom) as
described in Subsection V-A.

A. The ground state of a bulk system

This test uses a bulk potential Vbulk. We expect the precon-
ditioner to be very effective for ESCAN because if for example
we use HBB definition (21), then H−1v = QH−1

BBQ
T v for

every v ∈ SBB . In other words, this is the case of an “ideal”
preconditioner for the SBB subspace, and therefore also the
case when our new preconditioner will be most efficient.
Although we can solve this problem in one step by using as an
initial guess the bulk solution, in order to numerically demon-
strate the efficiency of the method we start with randomly
generated initial guess and show the convergence history for
bulk problems of increasing size. Finally, before explaining
the experiments below, we note that the dimension of the SBB

subspace is less then 2% the dimension of the solution space
S.

We show results for two test systems. The first consists of
64 atoms of Cd-Se; 32 atoms for each of its 2 components.
The second is again for Cd-Se but is of 512 atoms; 256 atoms
for each of its components. We use the CG method to compute
the 4 lowest eigenstates (15 inner iterations).

The convergence histories for the two test systems are
given on Figure 4. We solve for the 4 lowest eigen-states

and the convergence shown is for the 4th. The required
accuracy is residual in l2 norm to be less than 10−10. We get
convergence using the new preconditioner in 3 and 4 iterations
for correspondingly the first and second test systems. For test
system 2 the new method reduces the number of iterations by
a factor of 4.

We note that these results do not involve spectral trans-
formation. Applying folded spectrum brings an additional
speedup of approximately factor of 2 (see next section) in
favor for the new method, and thus making it almost an order
of magnitude faster.
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Fig. 5. Convergence histories for test system 1 (top) and 2 (bottom),
perturbation for γ = 2 as described in Subsection V-B.

B. Quantum dot model problems

In this test case we simulate a quantum dot by by adding a
second term to the bulk potential, i.e.

V = Vbulk + Vpert. (26)

The perturbation term Vpert is chosen so that the bulk is
confined in the interior of the supercell. Namely, given the
center c of the supercell, we choose a radially symmetric
function

f(r) = ||r − c||2 − α, α > 0

and take
Vpert(r) = max(γf(r), 0),

where γ controls the size of the perturbation.
Similarly to the bulk case we consider the 2 test systems

from Subsection V-A but with the perturbed potentials as
described above. Figure 5 gives convergence histories for



perturbations of moderate size (γ = 2). The graphs on the top
are for system 1, and the graphs on the bottom are for system
2. The results show that the new preconditioner reduces the
number of iterations (compared to the old preconditioner) by
at least a factor of 2.

A bigger test case on a system of 4, 096 atoms is given
on Figure 6. Shown is comparison of new (top) vs old
preconditioner (bottom) for various perturbations.
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Fig. 6. Convergence histories for test system 3. On the top we show the
convergence for various perturbation using the multiplicative version of our
preconditioner. On the bottom is the convergence history for using a diagonal
preconditioner.

Applying folded spectrum transformation reveals an addi-
tional factor of 2 speedup in terms of reduced number of
matrix-vector products until desired convergence. A typical
result is illustrated for system 2 on Figure 7, where we show
a reduced number of iterations by an average factor of 4.

As mentioned in the previous subsection, the dimension of
SBB is less then 2% the dimension of the solution space.
Still, the angles of the eigenstates sought to the SBB subspace
are approximately 0.3, 0.4, and 0.5 for perturbations with γ
correspondingly 1, 2, and 4 for test system 2.

VI. CONCLUSIONS AND POSSIBLE EXTENSIONS

In conclusion, we showed a way to use QD bulk properties
in accelerating QD computations. The new preconditioner
shows promising results in accelerating the computation. It
is implemented in the much smaller G-space. Thus there is
no need for an FFT, and the nesting of SBB ⊂ S allows us
to efficiently implement H−1

BB and the projection operators.
The numerical results show the efficiency of the BB-based

 2.91038e-11

 9.31323e-10

 2.98023e-08

 9.53674e-07

 3.05176e-05

 0.000976562

 0.03125

 0  10  20  30  40  50  60  70  80  90

R
es

id
ua

l N
or

m
s

Number of Iterations

PCG with Folded Spectrum Convergence History (512 atoms of Cd48-Se34, perturbation 2)

diagonal preconditioner
LCBB multiplicative preconditioner

Fig. 7. Comparison of diagonal and BB preconditioning with folded spectrum
for test system with perturbation γ = 2 (right).

computation acceleration as we observe a factor of 4 speedup
in terms of reduced number of iterations.

Future work includes testing the new technique on real
semi-conductor quantum dots. Other possible extensions of
this work include tests on quantum wires.
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