
DOI: 10.1007/s10766-005-3577-3
International Journal of Parallel Programming, Vol. 33, No. 2, June 2005 (© 2005)

The Component Structure1

of a Self-Adapting Numerical Software2

System3

Victor Eijkhout, Erika Fuentes,1 Thomas Eidson,2 and4
Jack Dongarra15

Received �; revised �; accepted �

Self-Adapting Numerical Software (SANS) systems aim to automate some of6
the laborious human decision making involved in adapting numerical algo-7
rithms to problem data, network conditions, and computational platform. In8
this paper we describe the structure of a SANS system that tackles auto-9
matic algorithm choice, based on dynamic inspection of the problem data.10
We describe the various components of such a system, and their interfaces.11

KEY WORDS: Linear system solving; component frameworks; adaptive sys-12
tems.

13

1. INTRODUCTION14

The process of arriving at an efficient numerical solution of problems in15
applied physics, chemistry, etc., involves numerous decision by a numeri-16
cal expert. Attempts to automate such decisions (see Ref. 1 for a recent17
overview) distinguish three levels:18

• algorithmic decision;19
• management of the parallel environment;20
• processor-specific tuning of kernels.21

This paper addresses the top level, where algorithm choices are made22
dynamically based on the problem data. We describe the architecture of23

1 University of Tennessee, Knoxville TN, USA.
2 Old Dominion University, Norfolk, VA, USA.

13

0885-7458/04/0200-0013/0 © 2004 Springer Science+Business Media, Inc.

Journal: IJPP CMS: NY00003577 � TYPESET � DISK LE CP Disp.: 5/5/2004 Pages: 7

14 Eijkhout et al.

such a Self-Adapting Numerical Software (SANS) system for algorithm24
choice, paying particular attention to the formalization of various inter-25
faces between modules in the system. We will not go into the modeling26
techniques that build up the heuristics of the ‘intelligence’ of the system.27
An introduction to this subject can be found in Ref. 1.28

2. SYSTEM COMPONENTS29

A SANS system has the following large scale building blocks:30

• Application,31
• Analysis Modules,32
• Intelligent switch,33
• Numerical libraries or components,34
• Database,35
• Modeler.36

We will discuss each of these, devoting particular attention to their inter-37
faces.38

2.1. The Application39

The problem to be solved by a SANS system typically derives from a phys-40
ics, chemistry, etc., application. This application would normally call a library41
routine, picked and parametrized by an application expert. Absent such an42
expert, the application calls the SANS routine that solves the problem.43

For maximum ease of use, then, the API of the SANS routine should44
be largely similar to the library call it replaces. However, this ignores the45
issue that we may want the application to pass application metadata to the46
SANS system. Other application questions to be addressed relate to the47
fact that we may call the SANS system repeatedly on data that varies only48
a little between instances. The paradigmatic example here is the sequence49
of linear systems to be solved in the course of a nonlinear (Newton) pro-50
cess. In such cases we want to limit the effort expended by the Analysis51
Modules.52

The solution to both problems is to extend the notion of problem53
data to a ‘dataset’, which can contain application metadata, as well as54
knowledge about the context of the system call. Components accepting55
such datasets as input are said to have an ‘extended interface’. We will go56
into the matter of this below; see Section 3.3.57

2.2. Analysis Modules58

Analysis modules have a two-level structure of categories and ele-59
ments inside the categories. Categories are mostly intended to be concep-60
tual, but they can also be dictated by practical considerations.61

The Component Structure of a self-Adapting Numerical Software system 15

In the case of linear algebra problems, conceptual categories are62

• pertaining to the nonzero structure of matrices (for sparse prob-63
lems);64

• norm-like properties (including diagonal dominance);65
• spectral properties.66

As an example of a nonconceptual categories, one can imagine the set of67
elements required by a certain algorithm.68

An analysis element can either be computed exactly or approximately.69
For instance, the nonzero structure of a matrix can be computed exactly70
at very little cost, but bounds on the spectrum will in practice only be71
approximated. For some approximations, the degree of confidence can be72
quantified, but in other cases one can at best indicate what algorithm was73
used to compute them.74

The output interface of the modules is defined by our standard for75
numerical metadeta.76

The input interface is slightly more complicated. Here we remark that77
modules have to accept the same kind of data as the numerical compo-78
nents do, so we can adopt the extended interface here too.79

2.3. Intelligent Switch80

The intelligent switch determines which library code to apply to the81
problem. However, the method choice can be a composite decision, where82
certain stages can be considered preliminary transformations of the prob-83
lem. Since such a transform maps the original problem to another, for84
which other numerical metadata applies, the switch can choose to rerun85
the analysis modules. This approach is expensive but likely to be accurate.86

The alternative is to use only the initial metadata, and decide all87
transforms together. Of course, certain transforms leave certain categories88
of metadata invariant. For instance, scaling a matrix leaves the sparsity89
structure intact.90

2.4. Numerical Components91

In order to make numerical library routines more managable, we92
embed them in a component framework. This will also introduce a level93
of abstraction, as there need not be a one-to-one relation between library94
routines and components. In fact, we will define two kinds of compo-95
nents:96

• library components are uniquely based on library routines, but they97
carry a specification in the numerical adaptivity language (Section98
3.2) that describes their applicability;99

16 Eijkhout et al.

• ‘numerical component’ are based one or more library routines, and100
having an extended interface (Section 3.3) that accomodates passing101
numerical metadata.102

This distinction allows us to make components corresponding to the spe-103
cific algorithm level (‘Incomplete LU with drop tolerance’) and generic104
(‘preconditioner’).105

2.4.1. Transform Components106

In certain problem domains it may be possible to pick a routine (or107
component in our framework) that solves the stated problem by itself.108
However, in other cases the solution is effected by the interplay of vari-109
ous pieces of software, such as the preconditioner and iterative method in110
iterative linear system solution.111

We can take this modularity one step further by introducing ‘trans-112
form components’ which map one problem into another. Examples here113
would be permutations or scalings of matrix problems, prior to choosing114
the preconditioner and iterative method.115

Presumably there is a choice of mappings, so we need to pass numer-116
ical metadata to a transform component. In fact, a transform will have117
largely the same extended interface as other numerical components.118

Like numerical components, a transform can be queried as to the119
numerical metadata that is needed for determination of the mapping120
choice.121

Applying the transforms is under control of the intelligent switch.122

2.5. Database123

The database of a SANS system contains information that couples124
problem features to method performance. While problem features can be125
standardized (this is numerical metadata), method performance is very126
much dependent on the problem area and the actual algorithm.127

As an indication of some of the problems in defining method perfor-128
mance, consider linear system solvers. The performance of a direct solver129
can be characterized by the amount of memory and the time it takes.130
The amount of memory here is strongly variable between methods, and131
should perhaps be normalized by the memory needed to store the prob-132
lem. For iterative solvers, the amount of memory is usually limited to133
a small multiple of the problem memory, and therefore of less concern.134
However, in addition to the time to solution, one could here add a mea-135
sure such as“time to a certain accuracy”, which is interesting if the linear136
solver is used in a nonlinear solver context. There is no counterpart to this137

The Component Structure of a self-Adapting Numerical Software system 17

measure in direct solvers, other than the trivial measure that the time to138
any accuracy is the same.139

2.6. Modeler140

The intelligence in a SANS system resides in two components: the141
intelligent switch which makes the decisions, and the modeler which draws142
up the rules that the switch applies. The modeler draws on the database143
of problem characteristics (as laid down in numerical metadata) to make144
rules express in an ‘adaptivity specification language’ (Section 3.2).145

3. INTERFACES146

3.1. Numerical Metadata147

Numerical metadata is data associated with the numerical data. This148
can either be149

• derived metadata: information derived from the numerical data, or150
• application metadata: facts known a priori and normally not passed151

from the application to the library routines.152

In the NMD library, described in Ref. 2 we have standardized the API153
to these data. This also defines the interface between the analysis modules154
and the intelligent switch.155

3.1.1. Derived Metadata156

Derived numerical metadata comprises such categories as157

• structural metadata, relating to the nonzero structure of a sparse158
matrix;159

• norm-like properties, including diagonal dominance; these first two160
categories are typically cheaply computable up to reasonable round-161
off;162

• spectral information, giving some estimate of the spectrum or sin-163
gular values of a matrix;164

• other measures of a matrix such as departure from normality; these165
last two measures can not be computed exactly at a reasonable cost,166
but estimates—though more expensive than for the first two cate-167
gories—can be obtained at a cost that is still justifiable as part of168
preprocessing.169

In our paper(2) we proposed a core repertoire of numerical metadata cat-170
egories, but the NMD language definition allows extension. For instance,171

18 Eijkhout et al.

one could introduce a category to account for the quantities measured in172
Ref. 3.173

3.1.2. Application Metadata174

Application metadata is numerical metadata that derives from knowl-175
edge of the application. Typical examples are176

• grid properties;177
• nature of the problem;178
• properties of the operator if PDE.179

Such information can be useful to an intelligent system (for instance,180
knowing positive definiteness obviates the need to infer this fact) but is181
usually dropped because the interface between application and numerics182
has no way of passing it.183

3.2. Adaptivity Specification Language184

A language for specifying the rules that control intelligent choice of185
algorithms is still a topic of research. Such a language will be used as the186
interface between the modeler and the intelligent switch, where the mod-187
eler extracts rules from the database, and the switch applies them to spe-188
cific data.189

An adaptivity specification language can also be used in numerical190
components. One can envision library components coming equiped with191
suitably formulated rules describing their applicability. This adds a seman-192
tic side to the interface specification of components.193

3.3. Extended Interfaces194

The extended interface captures more the semantics than the syntax:195
it contains196

• routine parameters if the component is based on a single routines;197
missing parameters are filled with default or determined values;198

• the union of all routine parameters if the component contains more199
than one routine; in this case parameters can be specified for any200
and all, only the relevant ones are used;201

• numerical metadata: the presence of this makes it possible for the202
component to be intelligent and choose between the wrapped rou-203
tines.204

We also enhance the output side of components. In the case of numer-205
ical components this allows for performance data to be returned; with206

The Component Structure of a self-Adapting Numerical Software system 19

transform components this allows metadata to be returned, describing the207
transformed problem.208

4. CONCLUSION209

We have outlined precise definitions of the modules and interfaces210
in a SANS system for algorithm choice. Some of these interfaces have211
been formally defined in our research, others are in a process of being212
developed.213

ACKNOWLEDGMENTS214

This research was supported in part by NSF NGS program under215
grant ACI-0203984 and in part by the AMS/MICS office of the DOE216
under contract DE-ACO5-00OR22725 with UT-Battelle, LLC., and in part217
by the Los Alamos Computer Science Institute through the subcontract218
R71700J-29200099 from Rice University.219

REFERENCES220

1. J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, R. C. Whaley,221
and K. Yelick, Self Adapting Linear Algebra Algorithms and Software, in: Proc. of the222
IEEE (2004).223

2. V. Eijkhout and E. Fuentes, A proposed standard for numerical metadata. Techni-224
cal Report ICL-UT 03-02, Innovative Computing Laboratory, University of Tennessee,225
2003. Poster presentation at Supercomputing (2003).226

3. S. T. Xu, E. J. Lee, and J. Zhang, An Interim Analysis Report on Preconditioners and227
Matrices, Technical Report 388-03, University of Kentucky, Lexington; Department of228
Computer Science (2003).229

