
Performance Optimization and Modeling of
Blocked Sparse Kernels

Alfredo Buttari ∗, Victor Eijkhout †, Julien Langou†, and Salvatore Filippone∗

Report ICL-UT-04-05

Abstract

We present a method for automatically selecting optimal implementations of sparse matrix-
vector operations. Our software ‘AcCELS’ (Accelerated Compress-storage Elements for Lin-
ear Solvers) involves a setup phase that probes machine characteristics, and a run-time phase
where stored characteristics are combined with a measure of the actual sparse matrix to find
the optimal kernel implementation. We present a performance model that is shown to be ac-
curate over a large range of matrices.

1 Introduction

Sparse linear algebra computations such as the matrix-vector product or the solution of
sparse linear systems lie at the heart of many scientific disciplines ranging from computa-
tional fluid dynamics to structural engineering, electromagnetic analysis or even the study
of econometric models. The efficient implementation of these operations is thus extremely
important; however, it is extremely challenging as well since simple implementations of
the kernels typically give a performance that is only a fraction of peak.

At the heart of the performance problem is that sparse operations are far more bandwidth-
bound than dense ones. Most processors have a memory subsystem considerably slower
than the processor, and this situation is not likely to improve substantially any time soon
Consequently, optimizations are needed, likely to be intricate, and very much dependent
on architectural variations even between closely related versions of the same processor.

The classical approach to the optimization problem consists in hand tuning the software
according to the characteristics of the particular architecture which is going to be used,
and according to the expected characteristics of the data. This approach yields significant
results but poses a serious problem on portability because the software becomes tightly
coupled with the underlying architecture.

The Self Adaptive Numerical Software efforts [4, 10] aim to address this problem. The
main idea behind this new approach to numerical software optimization consists in devel-
oping software that is able to adapt its characteristics according to the properties of the
underlying hardware and of the input data.

∗ Tor Vergata University, Rome, Italy
† University of Tennessee, Knoxville TN 37996, USA. This research was partly support by SciDAC: TeraScale
Optimal PDE Simulations, DE-FC02-01ER25480

1

We remark that the state of kernel optimization in numerical linear algebra is furthest ad-
vanced in dense linear algebra. The ATLAS software [10] gives near optimal performance
on the BLAS kernels. Factorizations of sparse matrices (MUMPS [1, 12], SuperLU [6],
UMFPACK [3, 14]) also perform fairly well, since these lead to gradually denser matri-
ces throughout the factorization. Kernel optimization leaves most to be desired in the opti-
mization of the components of iterative solvers for sparse systems: the sparse matrix-vector
product and the sparse ILU solution.

In this document we describe the theory and the implementation of an adaptive strategy for
sparse matrix-vector products. The optimization studied in this paper consists in performing
the operation by blocks instead by single entries, which allows for more optimizations, thus
possibly leading to faster performance than the scalar – reference – implementation. The
parameter optimized is the choice of the block dimensions, which is a function of the
particular matrix and the machine.

An approach along these lines has already been studied in [9]. We employ essentially the
same optimizations, but relax one restriction in that research. However, we have developed
a more accurate performance model, which leads to better predictions of the block size,
and consequently higher performance. We will compare the accuracy of the models and
the resulting performance numbers.

Other authors have proposed similar and different techniques for accelerating the sparse
matrix-vector product. For instance, Toledo ([8] and the references therein) mentions the
possibility of reordering the matrix (in particular with a bandwidth reducing algorithm) to
reduce cache misses on the input vector. Pinar and Heath [7] also consider reordering the
matrix; they use it explicitly to find larger blocks, which leads to a Traveling Salesman
Problem.

While the reordering approach gives an undoubted improvement, we have two reasons for
not considering it. For one, in the context of a numerical library for sparse kernels, per-
muting the kernel operations has many implications for the calling environment. Secondly,
our blocking strategy can equally well be applied to already permuted matrices, so our
discussion will be orthogonal to this technique.

Blocking approaches have also been tried before. Both Toledo [8] and Vuduc [9] propose a
solution where a matrix is stored as a sum of differently blocked matrices, for instance on
with the2×2 blocks, one with2×1 blocks, and the third one with the remaining elements.

Our code will be released as a package ‘AcCELS’ (Accelerated Compressed-storage Ele-
ments for Linear Solvers); it will also be part of the PSBLAS library [5].

In addition to the matrix-vector product, we also give a block-optimized version of the tri-
angular solve operation. This routine is useful in direct solution methods (for the backward
and forward solve) and in the application of some preconditioners.

In Section2, we discuss general issue related to the sparse linear algebra. In Section3,
we present a storage format that is appropriate for block sparse operations, and provide
the implementations for the matrix-vector product and the sparse triangular solve. We then
give performance analysis and results for the matrix-vector product. Because of the very
similar structure of the operations, this discussion carries over to the ILU solve.

2

2 Optimization of sparse matrix-vector operations

Matrix-vector multiplication and triangular system solving are very common yet expensive
operations in sparse algebra computations. These two operations typically account for more
than 50% of the total time spent in the solution of a linear sparse system using an iterative
method and, moreover, they tend to perform very poorly on modern architectures. There
are several reasons for the low performance of these two operations:

• Indirect addressing/low spatial locality: sparse matrices are stored in data struc-
tures where in addition to the values of the entries the row indices and the column
indices have to be explicitly stored. The most common formats are Compressed
Sparse Row (CSR) and Compressed Sparse Column (CSC) storage [2, §4.3]. During
the matrix-vector product, in the case of CSR storage of the matrix (resp. CSC) the
discontinuous way the elements of the source vector (resp. destination vector) are
accessed is a bottleneck that causes low spatial locality.

• Low temporal locality: In order to minimize memory access, it is important to max-
imize the number a data is reused. During a sparse matrix-vector product with a ma-
trix stored in Compressed Sparse Row (CSR) format, the elements of the matrix are
accessed sequentially in row order and are used once, the elements of the destination
vector are accessed sequentially and each of them is reused as many times as the
number of elements in the corresponding row of the sparse matrix which is optimal
with respect to the temporal locality. Unfortunately, the elements of the initial vector
are accessed according to the column indices of the elements of the active row of
A. The elements ofx are reused during the matrix-vector product when their row
indices belongs to two (or more) consecutive rows of the matrixA where there are
elements on the corresponding column. Using the CSR storage format for the matrix
implies that all the computations are performed row by row, thus, while moving from
one row to the next the cache is in general overwritten. This leads to poor temporal
locality of the source vector.

• Low ratio between floating-point operations and memory operations:apart from
the elements of the matrix, the indices also have to be explicitly read from memory
which leads to a high consumption of the CPU-memory bandwidth. Basically, there
are two reads per floating-point multiply-add operation. The ratio is one in the dense
case. The comparison with the dense linear algebra is even starker if we consider that
there is one write operation per row. Since there typically are far fewer elements per
row in the sparse case, this type of overhead is relatively higher in the sparse case.
Moreover retrieving and manipulating the column/row indices informations implies
an amount of integer operations that is not negligible.

• High loop overhead: Connected to the low number of elements per row in sparse
systems, the loop overhead is correspondingly higher. Furthermore, since the loop
length is not constant throughout the matrix, there is more indexing computation
involved, and because of the non-uniformity several compiler techniques such as
loop interchange are not possible in straightforward manner.

The optimization of the sparse matrix-vector operations presented in this paper consists in
tiling the matrix with small dense blocks that are chosen to cover the nonzero structure of
the matrix. This causes an improvement in scalar performance due to reduced indexing and
greater data locality of the dense blocks. Unfortunately the number of operations increases
due to the operations performed on the zeros arising in the dense blocks (this phenomenon
will be referred to asfill-in). There is clearly a trade-off, which we propose to analyze.

Optimizing the sparse matrix-vector product kernels has two components:

3

1. Assessing the performance for blocks of different sizes. This performance is a non-
trivial function of various architectural features;

2. Finding the best tiling for a given matrix. Each different block size results in a dif-
ferent number of stored nonzeros, and therefore a different number of operations
performed. This needs to be balanced with the performance of the dense blocks, in a
way that will be explained below.

Previously, the Atlas project [10] has been singularly successful in optimizing dense linear
algebra kernels. The ATLAS strategy consists in optimizing the different parameters to the
architecture in a installation phase.

In the sparse case, the structure of the matrix has a great influence on the optimal parameters
and the resulting performance. A static approach like this one is not possible. Since the
structure of the matrix is only known at runtime, the choice of the parameters for the sparse
matrix-vector product is performed at runtime. Consequently the block size selection is on
the basis of information that is gathered in two distinct phases:

1. Installation-time phase: in this phase we analyze the impact of the architecture
characteristics on the performance of the block operations.

2. Run-time phase:in this phase we examine how the sparsity structure of the matrix
influences the fill-in ratio.

3 The block sparse matrix format

In this section we present the block sparse matrix storage format, and the implementation
of the matrix-vector multiply and the triangular solve kernels.

3.1 The BCSR storage format

The Block Compressed Sparse Row storage format for sparse matrices exploits the bene-
fits of data blocking in numerical computations. This format is similar to the CSR format
except that single value elements are replaced by dense blocks of general dimensionsr×c.
Thus a BCSR format with parametersr = 1 andc = 1 is equivalent to the CSR format. All
the blocks are row-aligned which implies that the first element of each block (i.e., the upper
leftmost element) has a global row index that is a multiple of the block row dimensionr.
We can choose whether or not to let the blocks also be column-aligned.

A matrix in BCSR format is thus stored as three vectors: one that contains the dense blocks
(whose elements can be stored by row or by column); one that contains the column index
of each block (namely the column index of the first element of each block); and one which
contains the pointers to the beginning of each block-row inside the other two vectors (a
block row is a row formed by blocks, i.e. an aligned set ofr consecutive rows).

Formally (in Fortran 1-based indexing),

for j=ptr [i]...ptr[i+1]-1:
for k=1...(r*c):

elem [(j-1)*r*c+k] contains
A((i− 1) ∗ r + (k − 1)/c + 1, col ind[j] + mod(k − 1, c) + 1)

All elements of the matrixA belong to a small dense block; this means that when the
number of nonzero elements is not enough to build up a block, we explicitly store zero
values to fill the empty spaces left in the blocks. These added zero values are called fill-in
elements.

4

Figure 1: Fill-in for3× 3 row and column aligned blocks.

Figure1 shows the tiling of a12 × 12 matrix with 3 × 3 row and column aligned blocks.
The black filled circles are the nonzero elements of the matrix while the empty circles are
zero elements added. The fill-in ratio is computed as the ratio between the total number of
elements (original nonzeros plus fill-in zeros) and the nonzero elements; for the matrix in
Figure1 with 3× 3 block size the fill-in ratio is2.8. Performing the matrix-vector product
with the matrix in Figure1 stored in BCSR format with3×3 block size,2.8 times as many
floating point operations as in the case of the CSR format have to be executed.

Fortunately, in most sparse matrices the elements are not randomly distributed, so such
a block tiling often makes sense. Either the matrices have an intrinsic block structure (in
which case the fill-in is zero), or elements are sufficiently clustered so that it is possible to
find a block size for which the fill-in is low.

We can often get a lower fill-in by relaxing the limitation that the blocks be column aligned.
Each block inside a block row begins at a column index that is not necessarily a multiple
of the column sizec. While this choice increases the time spent during the matrix building
phase since more possibilities have to be evaluated, it has no extra overhead during the
matrix-vector product operation. Figure2 shows the tiling of the same matrix with3 × 3
row aligned but column unaligned blocks. In this case the fill-in ratio is reduced to2.36.

The data structure used to store a matrix in BCSR format is the same as the one used inside
PSBLAS to store matrices in CSR, COO or JAD formats. All of these storage formats need
two integer arrays to store information about the indices and a double precision real array
to store the nonzero elements of the matrix. In the case of the BCSR format, we decided to
store the blocks row sizer and column sizec inside theINFOA(:) array that is meant to
contain informations relative to the structure of the matrix.

TYPE D_SPMAT
! Numbers of rows and columns
INTEGER :: M, K

5

Figure 2: Fill-in for3× 3 row aligned blocks.

! Identify the representation method. Ex: CSR, JAD, ...
CHARACTER(LEN=5) :: FIDA
! Describe some characteristics of the sparse matrix
CHARACTER(LEN=11) :: DESCRA
! Contains some additional information on the sparse matrix
INTEGER :: INFOA(10)
! Contains the coefficients of the sparse matrix
REAL(KIND(1.D0)), POINTER :: ASPK(:)
! Contains indices that describes sparse matrix structure
INTEGER, POINTER :: IA1(:), IA2(:)
! Permutations matrix
INTEGER, POINTER :: PL(:), PR(:)

END TYPE D_SPMAT

The arrayASPK(:) contains the elements of the matrix (nonzeros plus fill-in zeros), the
arrayIA1(:) contains the columns indices of each block while the arrayIA2(:) con-
tains the pointers for each block row insideASPK(:) andIA1(:) .

3.2 BCSR kernels

In this section we describe the implementation of the matrix-vector product and the trian-
gular system solve for a matrix stored in BCSR format.

3.2.1 The matrix-vector product

The source code for the matrix-vector producty ← y + Ax with A with a tiling block size
of 2× 3 is the following:

...
for(i=0;i<*m;i++,y+=2){

6

int j;
register double y0=y[0];
register double y1=y[1];
for(j=ia2[i];j<ia2[i+1];j++,ia1++,aspk+=6){

y0 += aspk[0]*x[*ia1 +0];
y1 += aspk[3]*x[*ia1 +0];
y0 += aspk[1]*x[*ia1 +1];
y1 += aspk[4]*x[*ia1 +1];
y0 += aspk[2]*x[*ia1 +2];
y1 += aspk[5]*x[*ia1 +2];

}
y[0]=y0;
y[1]=y1;

}
...

The code consists of two loops: the outer is over the number of block-rows, while the inner
loop is over the number of blocks in each row. The partial result of the product of each row
is held in an accumulatoryi and the code relative to the product of the small dense block
with a piece ofx is completely unrolled. Each dense block is stored in the arrayaspk in a
row-wise order.

3.2.2 The triangular system solve

The triangular system solve operation can be performed on a triangular matrix that possibly
has a unit diagonal. In the case of a unit diagonal we use the same data structure that we
use for a general sparse matrix; in the general case we force the blocks on the diagonal
to be squared of dimensionr × r, thus we need an additional arrayD(:) to store them.
The code for the lower triangular system solveLx = b in the case of non unitary diagonal
matrix with2× 3 blocks is:

...
double *xp=x;
for(i=0; i<*m; i++, xp+=2, b+=2, d+=4){

register double x0=b[0];
register double x1=b[1];
for(j=ia2[i]; j<ia2[i+1]; j++, aspk+=6){

x0-=aspk[0]*x[*ia1+0];
x1-=aspk[3]*x[*ia1+0];
x0-=aspk[1]*x[*ia1+1];
x1-=aspk[4]*x[*ia1+1];
x0-=aspk[2]*x[*ia1+2];
x1-=aspk[5]*x[*ia1+2];

}
//Solve small system on the diagonal
x1-=d[0][1]*x0;
xp[1]=x1/d[1][1];
xp[0]=(x0-d[0][1]*x1)/d[0][0];

}
...

7

The code is very similar to the one for the matrix-vector product except for the fact that at
the end of each block-row there is a small triangular system solution.

4 Performance optimization and modeling

In this section, we present a model for the performance of the block sparse matrix-vector
product. The time spent for a matrix-vector product of a matrixA can be computed as the
ratio between the MFlops rate at which it is performed and the number of floating-point op-
erations executed. Since the number of floating-point operations performed is proportional
to the fill-in ratio, we have:

time ∝ fillA(r, c)
perfA(r, c)

(1)

wherefillA(r, c) andperfA(r, c) are respectively the fill-in ratio and the matrix-vector prod-
uct performance rate for a givenr × c block size. Thus the best choice for the block size
(i.e., the one that results in the lowest time spent for the matrix-vector product operation)
is the one that minimizes the ratio in equation (1). The exact knowledge of the numerator
and denominator in equation (1) requires performing the matrix-vector product itself. An
exhaustive search throughr, c space is thus possible, but also quite expensive. We there-
fore limit ourselves to computing some estimates for these two values instead. We compute
fill′A(r, c) andperf ′

A(r, c) for every relevant block size and minimize the quantity

fill′A(r, c)
perf ′

A(r, c)
(2)

Section4.1 explains how the fill-in is estimated; Section4.2 deals with how the perfor-
mance optimization is automated.

4.1 Estimating the fill-in

The method we use for estimating the fill-in caused by a block size is the one proposed
in [9]: we sample a number of matrix rows and compute their individual fill-in. The fill-
in of the whole matrix is estimated the fill-in of this sample. This method relies on the
assumption that the matrix has a regular pattern.

This approach works fine with most matrices. However, the estimate can be inaccurate
when applied to matrices that have an highly irregular structure. There is a trade-off in this
strategy between the time we want to spent at run-time to obtain a good estimation of the
fill-in and the inaccuracy of this fill-in. Following [9], a parameteracc (0 ≤ acc ≤ 1) is
added to give the user a control on the size of the sub-matrix used in the fill-in estimation.
Givenm = dn/re the total number of block rows of the matrix for a given value ofr (the
block-row dimension), the fill-in is computed with them·acc block rows of the matrix. The
selection of the rows is made with a divide-and-conquer method based on random numbers
generation: the set ofm block rows is split inm · acc subsets and inside each of these
subsets a block row is selected randomly. IfA′ is the submatrix composed by the block
rowsm · acc samples, the operation performed at this phase can be formalized as

fill′A(r, c) = fillA′(r, c).

In the case of an irregular matrix, where an accurate fill-in value is needed, the choice
acc = 1 (the fill-in to be computed exactly) might be necessary. If the matrix has a regular

8

pattern, or if setup time is at a premium, a small value ofacc can be taken. The default
value foracc used in AcCELS (and PHiPAC) isacc = 0.2.

We already pointed out a difference between our package AcCELS and PHiPAC [9], in
that AcCELS does not require blocks to be column aligned, which implies a lower fill-
in. Regarding the time spent in the matrix-vector product, this is an advantage. However
this feature implies that the estimation of the fill-in (preprocessing phase) becomes more
complex and thus more expensive (up to three times more expensive). We add a parameter
to control whether the user wants aligned blocks or unaligned blocks. The default in the
AcCELS package is to have unaligned blocks.

4.2 Modeling block matrix performance

As is apparent from the code examples above, use of the BCSR storage format improves
the performance rate of the matrix-vector product sincer + c registers store elements of
the source vectorx for reuse, and elements of the destination vectory to minimize writes
back to main memory. What one would expect is that performance grows withr andc until
blocks dimension becomes too big and register spilling happens. In this Section, we show
that this expected behavior is almost never clearly followed on the different architectures
tested (except in the case of the Itanium2 architecture). In practice, it is not possible to
predict the performance of a certain block size emperically, so (as we will see in the ex-
periments in section4.2.1and4.2.2), we have to perform an exhaustive search through all
the possible dimensions of the blocks wherer ranges from1 to rmax andc ranges from
1 to cmax. The default value for valuesrmax andcmax is 10. On all the matrices used in
our tests, block sizes greater than10 gives unreasonably large fill-in, so there is no perfor-
mance gain to be expected. In Figure3 we plot the speedup obtained for the matrix-vector
product, (over the reference implementation) for all the possibler × c block sizes on an
Itanium2 machine. The matrix used is a1500× 1500 dense matrix stored in BCSR format.
The highest speedup is obtained for the8 × 1 block size, with a value of 3.55. The effect
of the register spilling is visible on the upper rightmost part of the graph. With increasingr
there is increasing reuse of the source vectorx, so we expect an increase in performance.
However, the performance is actually only increasing until the valuer = 8, after which it
drops to a lower level. On the other architectures tested we do not observe this behaviour.
For instance, in Figure4 the speedup is plotted for the same matrix on an SGI Octane. Here
the numbers can not so easily be interpreted, even though we still have reasonable speedups
(the highest is 1.97 for5× 7 blocks dimension).

However, these measurements on a dense matrix are likely to give only an upper bound
on the possible speedup. In an actual sparse matrix some operations will be on stored fill-
in elements, bringing down the speedup over the reference implementation, and the loop
overhead will be larger too. Figures5 and6 describe the actual speedup and fill-in ratio
respectively, using the ‘venkat01’ matrix on an Itanium2.

This matrix has a block structure and, even if the fill-in ratio is very high for bigger values
of r andc (6.14 for10×10 blocks dimension), for the4×4 blocks dimension and the sub-
multiples, the fill-in ratio is 1. The speedup over the time spent in a matrix-vector operation
is the result of the effect of register reuse and the overhead due to the fill-in and is plotted
in Figure7 (matrix venkat01 on an Itanium2 machine).

Comparing Figures5, 6 and7 we can see that even if the highest MFlops rate is for block
dimension8 × 1 (4.09), the fastest matrix-vector product is for block dimension4 × 2
because of lower fill-in.

9

 1

 1.5

 2

 2.5

 3

 3.5

column size c

ro
w

 s
iz

e
r

Speedup

10987654321

10

9

8

7

6

5

4

3

2

1

Figure 3: Speedup for the matrix-vector product of a1500 × 1500 dense matrix stored in
BCSR format on an Itanium2 machine.

4.2.1 Performance modeling by dense matrix

In this section we present the implementation of the performance prediction method that
is used in [9]. The impact of the register blocking on the performance is estimated at
installation-time by performing the matrix-vector product of a dense matrix stored in BCSR
format for all the possible combinations ofc andr. Thus, this model implicitly makes the
assumption that

perf ′
A(r, c) = perfDense(r, c).

This is justified if the sparsity structure of a matrix has a negligible impact on the effect
that the register blocking has on the performance.

OnceperfDense(r, c) has been evaluated for the different block sizes, the performance
rates of these tests are stored in a file and then accessed during the preprocessing phase of
the matrix-vector products.

We add an optimization to the strategy in [9]. Considering two block sizesr× c andr× c′

such that (a)c′ is a sub-multiple ofc and (b) the performance obtained for ther × c′ block
is lower than the one for ther × c block, then there is no use to consider the block size
r × c. If, for example, the4 × 2 blocks size gives better performance that the4 × 4, it is
not worth considering this last block size because each small4 × 4 block is the same as
two 4 × 2 blocks and then we would have exactly the same fill-in but lower performance.
The gain of applying this tuning can be considerable. For example, in Figure3: the values
on the first column (those relatives toc = 1) often are the highest for their corresponding
each row.

The block size selection (performed at run-time) for this strategy consists of:

10

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

column size c

ro
w

 s
iz

e
r

Speedup

10987654321

10

9

8

7

6

5

4

3

2

1

Figure 4: Speedup for the matrix-vector product of a1500 × 1500 dense matrix stored in
BCSR format on a SGI Octane machine.

1. Reading the file built at installation-time phase that contains the performance infor-
mationperf ′

A(r, c) for eachr andc.
2. Estimating the fill-infill′A(r, c) for eachr andc as described in4.1.

3. Selecting the block size for whichfill′A(r,c)
perf ′

A
(r,c) has the minimum value.

4.2.2 Improved performance model

The main reason why the performance prediction method described above might be in-
accurate is that often the performance rate of the matrix-vector product is affected by the
sparsity structure of the matrix. Tests we have done show the influence of two different
parameters on the performance of the matrix-vector product operation: the number of ele-
ments per row and the spread of elements in each row.

• Number of elements per row.To understand the impact that this parameter has on
the performance of the matrix-vector product let us consider the code of the matrix-
vector product for the1× 1 block size case (that is the CSR case):

...
for(i=0;i<*m;i++,y+=1){

register double y0=y[0];
for(j=ia2[i];j<ia2[i+1];j++,ia1++,aspk+=1){

y0 += aspk[0]*x[*ia1+0];
}
y[0]=y[0];

}
...

11

 1

 1.5

 2

 2.5

 3

 3.5

 4

column size c

ro
w

 s
iz

e
r

Speedup

10987654321

10

9

8

7

6

5

4

3

2

1

Figure 5: Speedup of blocked algorithm over the reference CRS method, for matrix
venkat01 stored in BCSR format on an Itanium2 machine.

The product is performed row-wise and for each row the partial result is held in an
accumulatory0 . At the end of the loop for a given row, the value in the accumula-
tor is written back to memory. Thus for each row we have2 × elem row floating
point operations, whereelem row is the number of elements per row, and a write
memory access. Given that a write memory access is much more expensive than a
floating-point operation, if we have a high ratio between the number of floating-point
operations and write memory accesses, we have better performances. The number of
write memory accesses depends on the size of the matrix thus the matrix-vector prod-
uct has better performance for the matrices which have a higher number of elements
per row. This is confirmed by the data plotted in Figure8 which describes the flop
rate of the matrix-vector product for matrices with different numbers of elements per
row in the case of1 × 1 block size. The red line describes the performance for the
matrix-vector product of sparse hand built matrices with all the elements close to the
diagonal while the green one describes the flop rate for the matrix-vector product
of a set of sparse matrices from real-world applications. (The set corresponds to the
matrices that we present in Section5). The difference between the two curves is due
to the fact that for the first set of matrices the number of elements per row is constant
among all the rows while for the second set of matrices the number of elements per
row may be different from one row to another.

• Distance between the elements.The distance between the elements of a matrix
influences both the spatial and temporal locality in the accesses of the source vector.
If the elements in a row are close to each other spatial locality is improved: depending
on the cache line length there is an higher probability to have elements of the source

12

 1

 2

 3

 4

 5

 6

column size c

ro
w

 s
iz

e
r

Fill-in Ratio

10987654321

10

9

8

7

6

5

4

3

2

1

Figure 6: Fill-in ratio for matrix venkat01 stored in BCSR format.

vector that are brought inside one cache line. If elements in consecutive rows are
close to each other it means that there is an higher probability to have elements on
the same column and thus an higher reuse of the elements of the source vector when
making the computations relative to those rows.
The curves in Figure9 plot flop rate versus number of elements per row of matrices
with different bandwidth. The matrices are hand built and on each row the column
indices are randomly generated inside an interval around the diagonal. The band-
width is defined as:maxj=1,nrows(maxj −minj) wherenrows is the number of
rows of the matrix andmaxj andminj are the maximum and minimum column
indices over each row. Thus the bandwidth of a matrix is defined as the width of the
interval. The column indices are randomly generated.
In Figure9 we observe that the matrices with a lower bandwidth (red curve) have
higher performance than those with a large bandwidth.

Even if it is possible to exhibit the role played by the distribution of the elements in a row
(Figure9), Figure8 indicates that the performance of matrix-vector products for matrices
coming from real-world applications is very close to the performance of banded matrices.
Thus taking into account how the elements are distributed in a row, is only of minor practi-
cal interest. For this reason, we only design a model that takes into account the number of
nonzero per row of the matrix.

This model (as opposed to the first one) takes the sparsity characteristic of the matrix into
account to have a better evaluation of the performance. Thus it is aimed to have a better
prediction for matrices with low number of elements per row. Matrices with a low number
of elements per row are very common in practice: more than 50% of the matrices in the
Matrix Market collection [11] (resp. the University of Florida matrix collection [13]) have

13

 0.5

 1

 1.5

 2

 2.5

 3

column size c

ro
w

 s
iz

e
r

Time Speedup

10987654321

10

9

8

7

6

5

4

3

2

1

Figure 7: Time reduction for the matrix-vector product of matrix “venkat01” on an Ita-
nium2 machine.

less than 7 (resp. 8) elements per row (as of this writing). Figure8 shows that using a
dense matrix to model the performance rate of the sparse matrix leads to a misprediction of
factor 3 for more than half of the sparse matrix available in those two standards collection.

We expect that this improved model leads not only to a better prediction of the performance
for a given block size but also enables us to have a better selection strategy in practical case.

A simple implementation of this strategy consists in computing the curve in Figure8 for
each block size, and store it for reference. The main drawback of this approach is that it
need considerable data storage that need to be accessed during the setup phase. Moreover
such approach is prone to spurious timings resulting in unreliable values of MFlops rate.
Instead we use a parametric model for these curves.

For each row in the sparse matrix-vector multiply, the following operations are involved:

• Loop overhead and index/bound calculations;
• One update of the result vector;
• A number of additions and multiplications proportional to the number of nonzeros

in the row.

This means that the time spent in the computations relative to each (block) row can be
modeled asc1 + c2elem row whereelem row is the number of (block) nonzeros, the
number of operations is for itself proportional toelem row. Finally the corresponding flop
rate (number of operations divided by time),perf”A(r, c), is expected to follow a hyperbola
that we prefer to write with three parameters:

perf”
A

(r, c) = a +
b

elem row + c
. (3)

14

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140 160 180 200

M
F

lo
ps

elements per row

banded matrix
real matrices

Figure 8: Performance rate for matrices with different number of elements per row. The
red line plots the performance of banded sparse matrices while the green one plots the
performance rate for a set of sparse matrices from real-world applications.

(We add a third parameter for flexibility purpose.)a is equal toperf ′
A(r, c), the perfor-

mance rate for the dense matrix.b/(elem row + c) is the correction we proposed to add
in order to have a more accurate model.b is negative,c is positive, so that the negative
correction term gets larger for smallerelem row.

Figure10 reports the curve that is measured for the1 × 1 block size case (the red one)
and the curve that is built for the same block size case with the regression model (3):
the distance between the two is negligible for our purposes. In a general manner, on the
Itanium2 machine, we observe that the curves plotted for the possible block sizes are all
within a few percent of the model (3).

We have observed thatac = −b, to within a few percents. This constraints setsperf”nnz=0(r, c) =
0. (As we can see on Figure10, the curve goes through the origin.) This constraint fits the
two-parameter model(c1, c2) explained previously (perf”A(r, c) ∝ elem row/(c2elem row+
c1)); however we prefer to work with a three-parameter model(a, b, c) as exposed in Equa-
tion 3. It is not much more expensive and might fit experimental data better.

4.3 Performance modeling and optimization procedure

We summarize the above by giving a step-by-step description of the optimization process.

At installation-time, for each block size, the matrix-vector product is performed for a small
number of different numbers of elements per row; the curve parameters (a, b andc) are
then computed using a least-square fitting method and finally the parametersa, b andc are
tabulated for all the block sizes.

15

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140 160 180 200

M
F

lo
ps

elements per row

banded matrix
bw=5000

bw=50000

Figure 9: Flop rate versus number of elements per row. The red line plots the performance
on banded matrices (i.e. the bandwidth is as low as possible), the green one plots the perfor-
mance on sparse matrices with bandwidth=5000 while the blue one plots the performance
rate sparse matrices with bandwidth=50000.

The matrices used during this process are automatically generated banded matrices, and the
least square fitting method is composed by a linear regression phase and a non-linear one:
the linear regression phase is used to build an initial guess for the non-linear one, then the
iterative non-linear technique is used to optimize the fitting. The variables of the correction
needs to satisfyb ≤ 0 ≤ c; if the data is very messy, the regression might violate this
condition (this has happened on some architectures for some block sizes). In such a case,
we setb = c = 0 anda equal to the mean value of the computed performance rates. This
reduces our strategy to the one used in [9] for these problematic cases.

With the information gathered at installation-time, we use our performance model at run-
time to predict the performance of a matrix-vector operation as follows. For each(r, c) pair
we evaluate the following steps:

• Let the fill-in ratiofill′A(r, c) be calculated as described in4.1.
• the parametersa, b, andc of the rational function3 are read from the file built at

installation-time. phase.
• the number of elements per row is computed as:

elem row =
nnz

m
× fill′A(r, c) (4)

wherennz is the number of nonzero elements in the matrix andm is the size of the
matrix.

16

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140 160 180 200

M
F

lo
ps

elements per row

banded matrix
regression

Figure 10: Comparison between the measured performance vs number of elements per row
curve (red) and the one built with the regression method (green).

• the performance estimate is computed as:

perf ′
A(r, c) = a +

b

elem row + c
(5)

Now the block sizer × c is chosen such that the quantity (1) is minimized.

5 Numerical tests

In this section we report the results of our block-size selection strategy compared with
results obtained using the PHiPAC software described in [9].

We start by devoting some attention to the proper construction of a timer for the sparse
operations.

5.1 Implementation of the timing routine

As a general principle, a timing routine should reflect the conditions in which the code is
used. In our case, we can not expect the matrix to stay resident in cache: even if the matrix
is small enough to fit inside the cache, the fact that it is in general used in conjunction
with other computational routines (e.g., in an iterative solver) means that the matrix is
likely to be flushed from the cache between applications of the product routine with a high
probability. Thus, a tester that repeatedly applies a small matrix to an input vector will give
an unrealistically high flop rate since the matrix stays resident in the cache.

17

We prevent artificially high flop rates by allocating a data set larger than the largest cache
size – in fact, to account for cache associativity and random-replacement strategies we allo-
cate several time the cache size – and filling this with multiple copies of the matrix-vector
problem. All the matrices and vectors in the data set are the same but a different memory
area is used for each of them, so that any two consecutive matrix-vector products will be
identical in behaviour, but operating on different data. The time for a single matrix-vector
product is computed as the average time for the matrix-vector product of all the matrices in
the data set. Figure11 shows how data cache influences the measure of performance. The
curves plot the performance of the matrix-vector product versus the number of elements
per row: the green line reports the case where cache effect is not avoided (i.e. data set that
includes only one matrix) while the red one reports the case where timings are performed
on a data set bigger than the data cache size. As can be expected, the impact of the cache is

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 20 40 60 80 100 120 140 160 180 200

M
F

lo
ps

number of elements per row

without cache effect
with cache effect

Figure 11: Comparison between timings with (green) and without (red) cache effects. This
data is computed using a banded sparse matrix on an Itanium2 machine.

only visible for matrices small enough to fit in cache. Note that since the size of the matrix
is fixed, a bigger number of elements per row means a higher density and thus requires a
larger memory.

In [9], the matrices studied are large enough to automatically flush the cache. For this
reason, there is no cache flush. Given that some matrices in our test set have smaller di-
mension, it is necessary to adopt our timing method to obtain reliable measures. Thus even
when comparing with performance obtained with PHiPAC we will refer to the timings
measured with the proposed technique.

18

matrix Predicted measured actual matrix elem.
perf. perf. perf. size per row

(MFlops) (MFlops) MFlops (MegaBytes)

raefsky3 1409 1315 1298 11.35 70.2
shyy161 720 386 370 2.51 4.3
mcfe 1152 1300 964 0.186 31.9
jpwh 911 397 308 182 0.045 6.1

Table 1: Predicted versus measured versus actual performance with code in [9]

5.2 Results

5.2.1 Timing Routine and Quality of the Models

Table 1 illustrates the importance of a well designed timer, as well as our performance
model. This table gives the predicted performanceperf ′

A(r, c) of the dense matrix model;
the measured performance relates to the timing method used in [9]; the actual performance
is the performance measured with our improved timer. In each case, the block size selected
by the dense matrix model is used.

Numbers reported in this table are measured on an Itanium2 architecture and are use four
different matrices whose characteristics try to capture the cases where the timing method
is inaccurate, or the model is inaccurate or both:

• raefsky: this is a large matrix (much larger than the data cache size) with a high num-
ber of elements per row. This means that both the timing method and the block size
selection strategy presented in [9] should be accurate. The error in the performance
prediction is just 8% while the error in the performance measure is 1%.

• shyy161:this matrix is larger than the data cache size so the performance measure
is accurate enough (error is 4%) while it has a low number of elements per row
and thus we expect the performance prediction based on the dense matrix model to
be wrong (error is 94%). Such a large error in the performance prediction can be
explained taking a look at the red curve in Figure10: the basic selection strategy
always predicts a performance that has the value of the asymptote of the rational
curve whether the right value (in the leftmost part of the curve) is much lower.

• mcfe: this is a small matrix with a relatively high number of elements per row. This
means that the timing method will be almost inaccurate (measured error is 34%)
while the error in performance prediction is enough low (19%) to result in a success-
ful optimal block size selection.

• jpwh 991: this is a small matrix with a low number of elements per row. The timing
measure has an error of 69% and the performance prediction has an error of 118%.

Table 2 reports predicted versus measured performance for the same matrices with our
improved selection strategy. The last column of this table contains the error of the perfor-
mance prediction the is considerably lower than the error that affects the selection strategy
that is based on the dense matrix performance. .

5.2.2 Comparison of the two selection strategies

Tables3, 4 and5 report the timing for the matrix-vector products for both AcCELS and
PHiPAC software respectively on Itanium2, AMD K6 and Power3 architectures. For both
the packages we report the time with the block size that is selected by the selection strategy

19

matrix predicted actual matrix elem. Pred.
perf. perf. size per row error

(MFlops) (MFlops) (MegaBytes)

raefsky3 1196 1275 11.35 70.2 6%
shyy161 725 815 2.51 4.3 11%
mcfe 954 964 0.186 31.9 1%
jpwh 911 402 411 0.045 6.1 2%

Table 2: Predicted versus actual performance with the improved selection strategy.

matrix Time Time Time Time
AcCELS AcCELS PHiPAC PHiPAC
selection best-case selection best-case

(sec) (sec) (sec) (sec)
raefsky3 2.33e-3 = 2.29e-3 =
shyy161 2.47e-3 = 3.01e-3 2.65e-3
mcfe 1.05e-4 = 1.05e-4 =
jpwh 991 5.77e-5 = 6.59e-5 5.79e-5
bayer02 5.43e-4 5.40e-4 5.91e-4 5.38e-4
saylr4 1.58e-4 = 1.89e-4 1.83e-4
ex11 2.61e-3 = 2.75e-3 =
memplus 8.03e-4 = 8.70e-4 8.08e-4
wang3 1.19e-3 = 1.44e-3 1.32e-3

Table 3: Time spent for a matrix-vector product with the selected block size and with the
best-case block size for AcCELS and PHiPAC.

(respectively the improved and the one based on the dense matrix performance) and the
time with the best-case block size. When there is an “=” sign it means that the selection
strategy hits the block size that gives the lower time.

Note that the matrix-vector product operations have different performance whether the ma-
trix is stored with aligned or unaligned blocks. Thus the best-case block size (and thus
the best time) is often different between PHiPAC (column-aligned) and AcCELS (column-
unaligned).

These tables show that our performance model (Equation (3)) gives both a better perfor-
mance estimation at a given block size (see previous section), and a better block-size se-
lection.

To finish comparing the two strategies, we shall say that in what concern the time spent at
installation-time, the basic selection strategy is much faster than the improved one. Regard-
ing the preprocessing phase (made at running time), it is about the same for both strategies.

5.2.3 Speedup obtained over the standard matrix-vector product

Table6 reports the time spent for a matrix-vector product with the block size that is selected
by the selection strategy and the reference time (i.e. the time with the1× 1 block size) for
the Itanium2 architecture. We can see that blocking enables nice speedup for this class of
matrix on the Itanium2.

20

matrix Time Time Time Time
AcCELS AcCELS PHiPAC PHiPAC
selection best-case selection best-case

(sec) (sec) (sec) (sec)
crystk03 2.16e-2 = 2.39e-2 =
orani 678 1.78e-3 = 2.82e-3 1.97e-3
rdist 1.84e-3 = 2.10e-3 2.04e-3
goodwin 7.62e-3 = 8.42e-3 =
coater2 6.33e-3 6.19e-3 6.73e-3 =
lhr10 5.56e-3 = 6.51e-3 5.76e-4
ex11 1.73e-2 = 2.26e-2 2.14e-2

Table 4: Time spent for a matrix-vector product with the selected block size and with the
best-case block size for AcCELS and PHiPAC. AMD K6 architecture.

matrix Time Time Time Time
AcCELS AcCELS PHiPAC PHiPAC
selection best-case selection best-case

(sec) (sec) (sec) (sec)
bayer02 1.90e-3 = 2.06e-3 1.84e-3
orani 67 1.78e-3 = 2.82e-3 1.97e-3
saylr4 5.19e-4 = 7.07e-4 5.88e-4
shyy161 8.65e-3 = 1.09e-2 8.92e-3
ex11 1.39e-2 = 1.52e-2 =
lhr10 4.35e-3 = 5.38e-3 4.77e-3
onetone2 6.68e-3 = 7.09e-e 6.70e-3

Table 5: Time spent for a matrix-vector product with the selected block size and with the
best-case block size for AcCELS and PHiPAC. Power3 architecture.

matrix Time Time
AcCELS AcCELS Speedup
selection reference

(sec) (sec)
raefsky3 2.33e-3 8.39e-3 3.63
shyy161 2.47e-3 4.23e-3 1.71
mcfe 1.05e-4 1.57e-4 1.49
venkat01 3.38e-3 1.12e-2 3.31
bayer02 5.43e-4 8.21e-4 1.51
saylr4 1.58e-4 2.38e-4 1.50
ex11 2.61e-3 6.22e-3 2.38
memplus 8.03e-4 1.29e-3 1.60
crystk03 4.09e-3 9.85e-3 2.40

Table 6: Time spent for a matrix-vector product with the selected block size and with the
best-case block size for AcCELS and PHiPAC. Itanium2

21

6 Conclusions

There are several issues in using a blocking strategy in sparse matrix-vector. First of all,
there is a strong matrix/architecture dependence. According to equation (1), to have an im-
provement over the1 × 1 product (the reference implementation), we definitely need to
have a fill-in (matrix dependent) smaller than the increase in the performance rate (ma-
chine dependent). It is also application dependent. There is a non-negligible preprocessing
overhead at run-time due to (a) the selection of the block-size (performance and fill-in pre-
diction), and (b) the change of data-format of the matrix (the matrix comes with its original
format and needs to be changed in BCSR format with the chosen block size). These factors
are outside the scope of this paper; for a detailed discussion we refer the reader to [9].

In this paper we have presented implementations of the sparse matrix-vector product and
LU solve kernels using a block matrix format that is more general than earlier proposed
formats (unaligned blocks). A performance model is given that accurately predicts the per-
formance of the sparse kernels. Compared to previous strategy, prediction and selection are
improved. Finally numerical tests bear out the accuracy of our model, and the improve-
ments attainable.

References

[1] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko Koster. A fully
asynchronous multifrontal solver using distributed dynamic scheduling.SIAM Jour-
nal on Matrix Analysis and Applications, 23(1):15–41, 2001. also ENSEEIHT-IRIT
Technical Report RT/APO/99/2.

[2] Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June M. Donato, Jack
Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk A. van der Vorst.
Templates for the Solution of Linear Systems: Building Blocks for Iterative Meth-
ods. Philadalphia: Society for Industrial and Applied Mathematics. Also available as
postscript file on http://www.netlib.org/templates/Templates.html, 1994.

[3] Tim A. Davis and Iain S. Duff. A combined unifrontal/multifrontal method for un-
symmetric sparse matrices.ACM Trans. Math. Software, 25:1–19, 1999.

[4] Jack Dongarra and Victor Eijkhout. Self-adapting numerical software for next gener-
ation applications.Int. J. High Perf. Comput. Appl., 17:125–131, 2003. also Lapack
Working Note 157, ICL-UT-02-07.

[5] Salvatore Filippone and Michele Colajanni. PSBLAS: a library for parallel linear
algebra computations on sparse matrices.ACM Trans. on Math Software, 26:527–
550, 2000.

[6] Xiaoye S. Li. Sparse Gaussian Eliminiation on High Performance Computers. PhD
thesis, University of California at Berkeley, 1996.

[7] Ali Pinar and Michael T. Heath. Improving performance of sparse matrix-vector
multiplication. InProceedings of SuperComputing 99, 1999.

[8] Sivan Toledo. Improving memory-system performance of sparse matrix-vector mul-
tiplication. In Proceedings of the 8th SIAM Conference on Parallel Processing for
Scientific Computing, 1997.

[9] Richard W. Vuduc.Automatic Performance Tuning of Sparse Matrix Kernels. PhD
thesis, University of California Berkeley, 2003.

[10] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical opti-
mizations of software and the ATLAS project.Parallel Computing, 27(1–2):3–35,
2001.

22

[11] http://math.nist.gov/MatrixMarket/ .
[12] http://www.enseeiht.fr/lima/apo/MUMPS/ .
[13] http://www.cise.ufl.edu/research/sparse/matrices/ .
[14] http://www.cise.ufl.edu/research/sparse/umfpack/ .

23

http://math.nist.gov/MatrixMarket/
http://www.enseeiht.fr/lima/apo/MUMPS/
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/umfpack/

	1 Introduction
	2 Optimization of sparse matrix-vector operations
	3 The block sparse matrix format
	3.1 The BCSR storage format
	3.2 BCSR kernels
	3.2.1 The matrix-vector product
	3.2.2 The triangular system solve

	4 Performance optimization and modeling
	4.1 Estimating the fill-in
	4.2 Modeling block matrix performance
	4.2.1 Performance modeling by dense matrix
	4.2.2 Improved performance model

	4.3 Performance modeling and optimization procedure

	5 Numerical tests
	5.1 Implementation of the timing routine
	5.2 Results
	5.2.1 Timing Routine and Quality of the Models
	5.2.2 Comparison of the two selection strategies
	5.2.3 Speedup obtained over the standard matrix-vector product

	6 Conclusions

