
24

NetSolve: past, present, and future;
a look at a Grid enabled server1

Sudesh Agrawal, Jack Dongarra, Keith Seymour,
and Sathish Vadhiyar

University of Tennessee, Tennessee, United States

24.1 INTRODUCTION

The emergence of Grid computing as the prototype of a next-generation cyber infras-
tructure for science has excited high expectations for its potential as an accelerator of
discovery, but it has also raised questions about whether and how the broad population
of research professionals, who must be the foundation of such productivity, can be moti-
vated to adopt this new and more complex way of working. The rise of the new era
of scientific modeling and simulation has, after all, been precipitous, and many science
and engineering professionals have only recently become comfortable with the relatively
simple world of uniprocessor workstations and desktop scientific computing tools. In
this world, software packages such as Matlab and Mathematica, and languages such as
C and Fortran represent general-purpose scientific computing environments that enable
users – totaling more than a million worldwide – to solve a wide variety of problems

1 Work supported in part by the NSF/NGS GRANT #NSF EIA-9 975 015, and NSF GRANT ACI-9 876 895

Grid Computing – Making the Global Infrastructure a Reality, edited by F. Berman, G. Fox and T. Hey.
 2002 John Wiley & Sons, Ltd.



614 SUDESH AGRAWAL ET AL.

through flexible user interfaces that can model in a natural way the mathematical aspects
of many different problem domains. Moreover, the ongoing, exponential increase in the
computing resources supplied by the typical workstation makes these scientific comput-
ing environments more and more powerful, and thereby tends to reduce the need for the
kind of resource sharing that represents a major strength of Grid computing. Certainly,
there are various forces now urging collaboration across disciplines and distances, and
the burgeoning Grid community, which aims to facilitate such collaboration, has made
significant progress in mitigating the well-known complexities of building, operating, and
using distributed computing environments. But it is unrealistic to expect the transition
of research professionals to the Grid to be anything but halting and slow if it means
abandoning the scientific computing environments that they rightfully view as a major
source of their productivity.

The NetSolve project [1] addresses this difficult problem directly: the purpose of Net-
Solve is to create the middleware necessary to provide a seamless bridge between the
simple, standard programming interfaces and desktop systems that dominate the work of
computational scientists, and the rich supply of services supported by the emerging Grid
architecture, so that the users of the former can easily access and reap the benefits (shared
processing, storage, software, data resources, etc.) of using the latter. This vision of the
broad community of scientists, engineers, research professionals, and students, working
with the powerful and flexible tool set provided by their familiar desktop computing
environment, and yet being able to easily draw on the vast, shared resources of the Grid
for unique or exceptional resource needs, or to collaborate intensively with colleagues in
other organizations and locations, is the vision that NetSolve is designed to realize.

24.2 HOW NetSolve WORKS TODAY

Currently, we have released Version 1.4.1 of NetSolve. The NetSolve homepage, located
at http://icl.cs.utk.edu/NetSolve/, contains detailed information and the source code.

In any network-based system, we can distinguish three main paradigms: proxy com-
puting, code shipping [2], and remote computing. These paradigms differ in the way they
handle the user’s data and the program that operates on this data.

In proxy computing, the data and the program reside on the user’s machine and are both
sent to a server that runs the code on the data and returns the result. In code shipping, the
program resides on the server and is downloaded to the user’s machine, where it operates
on the data and generates the result on that machine. This is the paradigm used by Java
applets within Web browsers, for example. In the third paradigm, remote computing, the
program resides on the server. The user’s data is sent to the server, where the programs
or numerical libraries operate on it; the result is then sent back to the user’s machine.
NetSolve uses the third paradigm.

There are three main components in the NetSolve system: the agent, the server, and
the client. These components are described below.

Agent : The agent represents the gateway to the NetSolve system. It maintains a database
of NetSolve servers along with their capabilities and dynamic usage statistics for use



NETSOLVE: PAST, PRESENT, AND FUTURE; A LOOK AT A GRID ENABLED SERVER 615

in scheduling decisions. The NetSolve agent attempts to find the server that will ser-
vice the request, balance the load amongst its servers, and keep track of failed servers.
Requests are directed away from failed servers. The agent also adds fault-tolerant heuris-
tics that attempt to use every likely server until it finds one that successfully services
the request.

Server : The NetSolve server is the computational backbone of the system. It is a daemon
process that awaits client requests. The server can run on single workstations, clus-
ters of workstations, symmetric multiprocessors (SMPs), or massively parallel processors
(MPPs). One key component of the server is the ability to wrap software library routines
into NetSolve software services by using an Interface Definition Language (IDL) facility
called the NetSolve Problem Description File (PDF).

Client : A NetSolve client user accesses the system through the use of simple and intuitive
application programming interfaces (APIs). The NetSolve client uses these APIs to make
a request to the NetSolve system, with the specific details required with the request. This
call automatically contacts the NetSolve system through the agent, which in turn returns
to the server, which can service the request. The client then contacts the server to start
running the job with the input data. Figure 24.1 shows this organization.

As mentioned earlier, NetSolve employs fault tolerance to fulfill client requests. The
NetSolve system ensures that a user request will be completed unless every single resource
capable of solving the problem has failed. When a client sends a request to a NetSolve
agent, it receives a sorted list of computational servers to •contact. When one of these

•Au: ‘ Try’ has been

replaced by ‘contact’.

Please advise if the

edit is appropriate.
servers has been successfully contacted, the numerical computation starts. If the contacted
server fails during the computation, another server is contacted, and the computation is
restarted. Table 24.1 shows how calls are made to NetSolve through Matlab, C, and
Fortran client interfaces.

There are a number of topics that we will not be able to cover fully in this chapter.
The list includes the following:

• Security
Uses Kerberos V5 for authentication

• Separate server characteristics
Prototype implementation of hardware and software servers

• Hierarchy of agents
Providing a more scalable configuration

• Monitor NetSolve network
Track and monitor usage

• Network status
Use of network weather service

• Internet Backplane protocol
Middleware for managing and using remote storage

• Fault tolerance
• The dynamic nature of servers



616 SUDESH AGRAWAL ET AL.

Servers
NetSolve pool of resources

NetSolve
agent

NetSolve
client

ProblemResult

Request

Choice

Figure 24.1 NetSolve’s organization.

Table 24.1 Solving a linear system A x = b with NetSolve

‘A’ is an m × m matrix and ‘b’ is an m × n matrix
In C and Fortran, the right-hand side is overwritten by the solution

From MATLAB:
x = netsolve(‘linsol’, A,b)

From C:
netsl(“linsol”,nsinfo,m,n,A,lda,b,ldb)

From FORTRAN:
CALL NETSL(“linsol”, NSINFO,M,N,A,LDA,B,LDB)

• Automated adaptive algorithm selection
Dynamically determine the best algorithm based on the system status and the nature

of user problem.

Additional details can be found on the NetSolve [3] Web site.



NETSOLVE: PAST, PRESENT, AND FUTURE; A LOOK AT A GRID ENABLED SERVER 617

24.3 NetSolve IN SCIENTIFIC APPLICATIONS

NetSolve has been used in a number of applications for resource management purposes, to
enable parallelism in the applications and to help users avoid installation of cumbersome
software. Following Sections detail some of the applications that reap the benefits of using
NetSolve.

24.3.1 IPARS (integrated parallel accurate reservoir simulators)

IPARS [4], developed under the directorship of Mary Wheeler at the Center for Sub-
surface Modeling, at the University of Texas’ Institute for Computational and Applied
Mathematics, TICAM, is a framework for developing parallel models of subsurface flow
and transport through porous media. IPARS can simulate single-phase (water only), two-
phase (water and oil), or three-phase (water, oil, and gas) flow through a multiblock 3D
porous medium. IPARS can be applied to model water table decline due to overproduction
near urban areas, or enhanced oil and gas recovery in industrial applications.

A NetSolve interface to the IPARS system that allows users to access the full functional-
ity of IPARS was constructed. Accessing the system via the MATLAB, C, Mathematica, or
FORTRAN interfaces automatically executes simulations on a cluster of dual-node work-
stations that allow for much quicker execution than what would be possible on a single
local machine. The NetSolve system also does the postprocessing of the output to use the
third-party software, TECPLOT, to render the 3D output images. Among other things,
NetSolve provides a gateway to the IPARS system without downloading and installing
the IPARS code. This means it can even be used on platforms that it has not yet been
ported to. The interface was further enhanced by embedding it in HTML form [5] within
a Web browser so that with just access to a Web browser one can enter input parameters
and submit a request for execution of the IPARS simulator on a NetSolve system. The
output images are then brought back and displayed to the Web browser. This interaction
showed how the NetSolve system can be used to create a robust Grid computing envi-
ronment in which powerful modeling software, like IPARS, becomes both easier to use
and to administer.

24.3.2 MCell

MCell [6] is a general Monte Carlo simulator of cellular microphysiology. MCell uses
Monte Carlo diffusion and chemical reaction algorithms in 3D to simulate the complex
biochemical interactions of molecules inside and outside of living cells. NetSolve is used
as a resource management framework to manage the execution of a large number of MCell
simulations on a large number of resources in the NetSolve Grid. One of the central pieces
of the framework is a scheduler that takes advantage of MCell input data requirements to
minimize turnaround time. This scheduler is part of the larger AppLeS at the University
of California, San Diego. The use of robust, coherent, and fault-tolerant NetSolve pool
of resources allowed the MCell researchers to implement parallelism in the simulations
with simple sequential calls to NetSolve.



618 SUDESH AGRAWAL ET AL.

24.3.3 SARA3D

SARA3D [7] is a code developed by BBN Acoustic Technologies that is used to solve
structural acoustic problems for finite-element structures emerging in a user-defined fluid.
The SARA3D application accepts as input a file describing the structure, the materi-
als involved, the fluid properties, and the actual analyses to be performed. As output,
the application generates a variable number of files that contain different types of data
calculated during the analyses. These output files can be further processed to compute
quantities such as radiated power, near and far-filled pressures, and so on. The SARA3D
application also consists of a large number of phases. The output files produced by one
phase of the application will serve as inputs to the next phase of the application. These
intermediate files are of no particular interest to the end user. Also, it is desirable that the
final output files produced by the application be shared by a large number of users.

For these purposes, SARA3D was integrated into the NetSolve framework utilizing the
data staging capability of NetSolve. Different NetSolve servers implementing the different
phases of the application were started. The user caches his input data near the servers
using the data staging facility in NetSolve. The user also indicates to the servers to output
the intermediate results and the final outputs to data caches. By this framework, only
relevant and sharable data are transmitted to the end users.

24.3.4 Evolutionary farming

Evolutionary Farming (EvCl) is a joint effort between the Department of Mathematics and
the Department of Ecology and Evolutionary Biology at the University of Tennessee. The
goals of the EvCl research are to develop a computer-based model simulating evolution
and diversification of metapopulations in a special setting and to explore relationships
between various parameters affecting speciation dynamics. EvCl consists of two main
phases, evolve, which simulates the evolution and cluster, which is used for species
determination. Since the problem involves separate runs of the same parameters due
to the stochastic nature of simulation, the NetSolve task-farming interface was used to
farm these separate simulations onto different machines. The use of NetSolve helped in
significantly reducing the cumbersome management of disparate runs for the problem.

24.3.5 LSI-based conference organizer

Latent Semantic Indexing (LSI) [8] is an information retrieval method that organizes
information into a semantic structure that takes advantage of some of the implicit higher-
order associations of words with text objects. The LSI method is based on singular value
decomposition (SVD) of matrices consisting of documents and query terms. Currently,
LSI is being used at the University of Tennessee to construct a Web-based conference
organizer [9] that organizes conference sessions based on submitted abstracts or full-text
documents. The computationally intensive SVD decompositions will be implemented by
the NetSolve servers allowing the developers of the Conference Organizer to concentrate
their research efforts in other parts of the organizer, namely, the Web interfaces. Integrating
the Conference Organizer into the NetSolve system also allows the users of the organizer
to avoid installing the SVD software in their system.



NETSOLVE: PAST, PRESENT, AND FUTURE; A LOOK AT A GRID ENABLED SERVER 619

24.4 FUTURE WORK

Over time, many enhancements have been made to NetSolve to extend its functionality or
to address various limitations. Some examples of these enhancements include task farming,
request sequencing, and security. However, some desirable enhancements cannot be easily
implemented within the current NetSolve framework. Thus, future work on NetSolve will
involve redesigning the framework from the ground up to address some of these new
requirements.

On the basis of our experience in developing NetSolve, we have identified several
requirements that are not adequately addressed in the current NetSolve system. These
new requirements – coupled with the requirements for the original NetSolve system – will
form the basis for the next generation of NetSolve.

The overall goal is to address three general problems: ease of use, interoperability, and
scalability. Improving ease of use primarily refers to improving the process of integrating
user codes into a NetSolve server. Interoperability encompasses several facets, including
better handling of different network topologies, better support for parallel libraries and
parallel architectures, and better interaction with other Grid computing systems such as
Globus [10] and Ninf [11]. Scalability in the context used here means that the system
performance does not degrade as a result of adding components to the NetSolve system.

The sections below describe some of the specific solutions to the general problems
discussed earlier.

24.4.1 Network address translators

As the rapid growth of the Internet began depleting the supply of IP addresses, it became
evident that some immediate action would be required to avoid complete IP address
depletion. The IP Network Address Translator [12] is a short-term solution to this problem.
Network Address Translation (NAT) allows reuse of the same IP addresses on different
subnets, thus reducing the overall need for unique IP addresses.

As beneficial as NATs may be in alleviating the demand for IP addresses, they pose
many significant problems to developers of distributed applications such as NetSolve [13].
Some of the problems pertaining to NetSolve include the following:

• IP addresses are not unique: In the presence of a NAT, a given IP address may not
be globally unique. Typically the addresses used behind the NAT are from one of the
several blocks of IP addresses reserved for use in private networks, though this is not
strictly required. Consequently, any system that assumes that an IP address can serve as
the unique identifier for a component will encounter problems when used in conjunction
with a NAT.

• IP address-to-host bindings may not be stable: This has similar consequences to the
first issue in that NetSolve can no longer assume that a given IP address corresponds
uniquely to a certain component. This is because, among other reasons, the NAT may
change the mappings.

• Hosts behind the NAT may not be contactable from outside: This currently prevents all
NetSolve components from existing behind a NAT because they must all be capable of
accepting incoming connections.



620 SUDESH AGRAWAL ET AL.

• NATs may increase network failures: This implies that NetSolve needs more sophisti-
cated fault-tolerance mechanisms to cope with the increased frequency of failures in a
NAT environment.

To address these issues we are currently investigating the development of a new com-
munications framework for NetSolve. To avoid problems related to potential duplication
of IP addresses, the NetSolve components will be identified by a globally unique identifier,
for example, a 128-bit random number. The mapping between the component identifier
and a real host will not be maintained by the NetSolve components themselves, rather
there will be a discovery protocol to locate the actual machine running the NetSolve
component with the given identifier. In a sense, the component identifier is a network
address that is layered on top of the real network address such that a component identifier
is sufficient to uniquely identify and locate any NetSolve component, even if the real
network addresses are not unique. This is somewhat similar to a machine having an IP
address layered on top of its MAC address in that the protocol to obtain the MAC address
corresponding to a given IP address is abstracted in a lower layer.

An important aspect to making this new communications model work is the relay,
which is a component that will allow servers to exist behind a NAT. Since a server cannot
accept unsolicited connections from outside the private network, it must first register
with a relay. The relay acts on behalf of the component behind the NAT by establishing
connections with other components or by accepting incoming connections. The component
behind the NAT keeps the connection with the relay open as long as possible since it
can only be contacted by other components while it has a control connection established
with the relay. To maintain good performance, the relay will only examine the header of
the messages that it forwards, and it will use a simple table-based lookup to determine
where to forward each message. Furthermore, to prevent the relay from being abused,
authentication will be required.

Since NATs may introduce more frequent network failures, we must implement a
protocol to allow NetSolve components to reconnect to the system and resume the data
transfer if possible. We are still investigating the specifics of this protocol, but at the least
it should allow the servers to store the results of a computation to be retrieved at some
time later when the network problem has been resolved. Additionally, this would allow a
client to submit a problem, break the connection, and reconnect later at a more convenient
time to retrieve the results.

24.4.2 Resource selection criteria

In the current NetSolve system, the only parameter that affects the selection of resources
is the problem name. Given the problem name, the NetSolve agent selects the ‘best’ server
to solve that problem. However, the notion of which server is best is entirely determined
by the agent. In the next generation of NetSolve, we plan to extend this behavior in two
ways. First, we should allow the user to provide constraints on the selection process. These
selection constraints imply that the user has some knowledge of the characteristics that
will lead to a better solution to the problem (most probably in terms of speed). Second,
we should allow the service providers (that is, those organizations that provide NetSolve



NETSOLVE: PAST, PRESENT, AND FUTURE; A LOOK AT A GRID ENABLED SERVER 621

servers) to specify constraints on the clients that can access that service. For example,
an organization may want to restrict access to a certain group of collaborators. We are
currently examining the use of XML as a resource description language.

24.5 CONCLUSIONS

We continue to evaluate the NetSolve model to determine how we can architect the sys-
tem to meet the needs of our users. Our vision is that NetSolve will be used mostly by
computational scientists who are not particularly interested in the mathematical algorithms
used in the computational solvers or the details of network-based computing. NetSolve
is especially helpful when the software and hardware resources are not available at hand.
With Grid computing, there exists many interesting areas of research to explore and much
room for improvement. We envision future work in features like dynamically extensible
servers whose configuration can be modified on the fly. The new strategy will be to imple-
ment a just-in-time binding of the hardware and software service components, potentially
allowing servers to dynamically download software components from service reposito-
ries. Parallel libraries could be better supported by data distribution/collection schemes
that will marshal input data directly from the client to all computational nodes involved
and collect results in a similar fashion. Efforts also need to be made so that clients can
solve jobs with large data sets on parallel machines; the current implementation requires
this data to be passed in the call since the calling sequence expects a reference to the data
and not a reference via a file pointer, and this may not be possible.

As researchers continue to investigate feasible ways to harness computational resources,
the NetSolve system will continue to emerge as a leading programming paradigm for Grid
technology. Its lightweight and ease of use make it an ideal candidate for middleware,
and as we discover the needs of computational scientists, the NetSolve system will be
extended to become applicable to an even wider range of applications.

REFERENCES

1. Casanova, H. and Dongarra, J. (1997) NetSolve: A network-enabled server for solving compu-
tational science problems. The International Journal of Supercomputer Applications and High
Performance Computing, 11(3), 212–223.

2. Agrawal, S. and Dongarra, J. J. (2002) Hardware Software Server in NetSolve, UT-CS-02-480,
University of Tennessee, Computer Science Department, Knoxville, 2002.

3. NetSolve Web site http://icl.cs.utk.edu/netsolve/.
4. IPARS Web site http://www.ticam.utexas.edu/CSM/ACTI/ipars.html.
5. TICAM Web site http://www.ticam.utexas.edu/∼ut/webipars/AIR.
6. MCell Web site http://www.mcell.cnl.salk.edu.
7. Allik, H., Dees, R., Moore, S. and Pan, D. (1995) SARA-3D User’s Manual, BBN Acoustic

Technologies.
8. Berry, M. W., Dumais, S. T. and O’Brien, G. W. (1995) Using linear algebra for intelligent

information retrieval. SIAM Review, 37(4), 573–595.
9. COP Web site http://shad.cs.utk.edu/cop.

10. Foster, I. and Kesselman, C. •(1997) Globus: A metacomputing infrastructure toolkit. Interna-

•Au: Please provide
the volume number
and the page range
for this reference.

tional Journal of Supercomputer Applications.



622 SUDESH AGRAWAL ET AL.

11. Nakada, H., Sato, M. and Sekiguchi, S. (1999) Design and implementations of Ninf: towards a
global computing infrastructure. Future Generation Computing Systems, Metacomputing Issue,
15(5–6), 649–658.

12. Egevang, K. and Francis, P. (1994) The IP Network Address Translator (NAT), RFC Tech
Report 1631, May 1994.

13. Moore, K. (2002) Recommendations for the Design and Implementation of NAT-Tolerant
Applications, Informal Communications, •February 2002.•Au: Please provide

the standard number
for this reference.

14. •XML-RPC Web site http://www.xml-rpc.com/.

•Au: Reference 14
and 15 have not been
cited in text. Please
provide the place of
citation.

15. Simple Object Access Protocol (SOAP) 1.1 Web site http://www.w3.org/TR/SOAP/.


