
Enabling Full Service Surrogates Using the Portable
Channel Representation

Micah Beck*, Terry Moore*
Innovative Computing Laboratory
Department of Computer Science

University of Tennessee
Knoxville, TN 37996-3450, USA

+1 865 974 3548

{mbeck, tmoore}@cs.utk.edu

Leif Abrahamsson
Chistophe Achouiantz, Patrik Johansson

Lokomo Systems AB
Svärdvägen 27

aSE-182 33 Danderyd, Sweden
+46 8 5490 4380

{leif, chris, patrik }@lokomo.com

ABSTRACT
The simplicity of the basic client/server model of Web services led
quickly to its widespread adoption, but also to scalability and
performance problems. The technological response to these
problems has been the development of technology for the creation of
surrogates for Web servers, starting with simple proxy caches and
reverse proxies, and leading more recently to the development of
Content Distribution Networks. Surrogate technologies based on
caches have proved quite successful in reducing the load due to
delivery of cacheable content (HTML files and images), but in
general they cannot replicate services that are implemented through
the execution of programs at the server. A full service surrogate is a
technology that is designed to address this issue directly because it is
a copy or mirror of the server that is created, managed and updated
automatically. One of the central issues in the creation of full
service surrogates is portability of interpreted content, and the
representation of metadata necessary to support execution. In this
paper we describe the Portable Channel Representation, which is an
XML/RDF encoded data model developed to enable full service
surrogates, and we discuss the implications of the increasing
importance of executable Web services.

Categories and Subject Descriptors
D.3.3 [Computer-Communication Networks]: Distributed
Systems – client/server, distributed applications.

General Terms
Management, Standardization, Languages

Keywords
Web server, dynamic content, portability, replication, content
distribution, surrogate, mirroring.

* The work of Micah Beck and Terry Moore was supported by the National
Science Foundation Internet Technologies Program under grant # ANI-
9980203, the University Corporation for Advanced Internet Development
and a grant from the IBM Corporation.

Copyright is held by the author/owner(s).
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

1. INTRODUCTION — TWO VIEWS OF
SURROGATES

For those who share the goal of creating wide area information
systems that are ubiquitous, universally accessible, and media rich,
the simplicity of the original Web model represents both a profound
strength and a profound liability. It is a strength because it makes it
relatively easy for people who have publishable content to set up a
Web site and make that material widely available; this ease of use
for content publishers is one of the primary reasons that the Web
spread with such incredible speed when it was introduced. But this
same simplicity also makes the basic approach liable to scalability
problems that have likewise been apparent from early on [5].

In the basic Web model a client generates a Hypertext Transfer
Protocol (HTTP) request that can be fulfilled at a unique server, and
the server’s response takes the form of a set of objects delivered in
an HTTP response [4]. For simple cases the response to a given
request is stable over at least short periods of time, and when it
changes, it changes in a predictable manner [7]. Because each
request is fulfilled at a single unique server, only one server must be
configured to respond to any particular request. Since Web clients
are distributed across the globe, however, the more numerous and
media hungry they become, the more bandwidth the responses to
their requests consume across an increasingly congested Internet
backbone. Poor performance for users, in the form of high
interaction latencies and slow transfer times, tends to be the result.

There are several recent and ongoing commercial efforts to
solve this problem by reengineering the Web to create high
performance Content Distribution Networks (CDNs). CDNs are
based on the use of surrogates, i.e. on the deployment of multiple
nodes within the network that can, under the control of the content
provider, fulfill the service requests of users in the appropriate
manner. According to the working definition currently used in the
discussions of IETF’s Web Replication and Caching Working
Group, a surrogate is

A gateway co-located with an origin server, or at a different
point in the network, delegated the authority to operate on
behalf of, and typically working in close co-operation with,
one or more origin servers. Responses are typically delivered
from an internal cache [12].
Although this wording weights the idea of a surrogate towards

cache-based implementations, surrogates of other forms have been
well known and widely used to achieve the same purpose for some
time. The full service surrogate model that we propose below draws

on this alternative tradition in order to create an approach to CDNs
that we believe has novel capabilities and strengths.

This “full-service” approach derives from a characteristic
analysis of how a Web service, and therefore a service surrogate, is
constituted. On this view a Web service node generally consists of a
server process running in a conventional operating system
environment. The state of this server is defined by two kinds of
files: configuration files and stored source objects. When the server
process receives a typical request, such as an HTTP GET, it uses the
information in the HTTP header to interpret the control information
in the configuration files to determine which source objects must be
retrieved in order to fulfill the request, what their type is, and how
they must be interpreted. In some cases, the request generates a call-
out to some other Web service node, and the response generated by
that node is relayed back to the client.

Note that this description of a Web service node is quite
general, encompassing both Web caches and other Web servers for
various protocols. Indeed, in our view a Web cache can be
characterized as a Web service node whose stored objects are
previous responses to Web requests that have been generated by
origin servers and captured by the cache. Capturing HTTP responses
according to a cache management policy is the most convenient way
to implement a surrogate, since it does not require the operation of
the origin server to be duplicated. As the widespread use of Web
caching and cache-based CDNs suggest, this approach is highly
effective where requests are predictable and sufficiently stable over
time.

Unfortunately, many services implemented in the Web today
do not fit the simple form of the caching model. Some services, for
example, are implemented dynamically through the execution of a
program by the Web server [14]. Important types of dynamic, non-
cacheable content services include (1) content generated from a
database query, (2) quickly changing content (e.g. live content), and
(3) highly interactive interfaces (e.g. those needing an applet). The
most common mechanisms for implementing such dynamic services
are programs invoked through the Common Gateway Interface
(CGI) and Java servelets executed as part of the server process [10,
15]. With either mechanism, however, the service request leads the
server to a stored, executable object, and this object is subsequently
executed using an interpreter determined by its type. To replicate
such non-cacheable services, you have to replicate the server itself,
creating an identical copy that can act as a full service surrogate,
invoking executable replicas of the appropriate source objects on
every request it fulfills.

Now the desire to create such a full service approach to content
distribution was one of the primary motivations for the Internet2
Distributed Storage Infrastructure (I2-DSI) project. This project
attempted to draw on ideas from traditional Internet mirroring in
order to implement a general, scalable network of servers for the
replication of both static content and dynamic content services
across heterogeneous operating environments [2]. In I2-DSI the
basic unit of replication is characterized as a channel, i.e. as “… a
collection of content which can be transparently delivered to end
user communities at a chosen cost/performance point through a
flexible, policy-based application of resources.” From the beginning
this concept of a channel explicitly included the kinds of dynamic
content that cache-based approaches have problems addressing.

But the idea of mirroring channels with dynamic content faces
challenging problems of its own. This fact is evident to anyone who
has tried to use a standard mirroring approach to replicate Web
servers with executable source objects. It proves too hard to do

because, as our analysis above shows, the behavior of such a Web
server depends on two critical factors and both of them are
problematic when you try to replicate them:

� Server configuration files are non-standard — The essential
configuration files that determine the response of a Web server
to client requests are not standardized; they depend on the
particular server software and can even differ between server
versions.

� References to source objects are file system dependent —
The Web server configuration files refer to directory names that
are dependent on the installation of stored source objects in the
file system, and file systems tend to vary across platforms and
system management styles.
Taken together these two factors mean that trying to create a

surrogate by simply copying the configuration files and source
objects to the target node only works where the servers are identical.
Where they are not identical, the mirroring operation must take into
account any heterogeneity in the architecture, operating system, or
server software on the target node, and the resulting copy must also
be compatible with the other operations the target node is
configured to perform. For this reason, porting a sophisticated Web
site to a non-identical server node can be a frustrating, time-
consuming task, where even substantial amounts of effort cannot
always guarantee that the result will be an identical copy of the site.

The concept of a Portable Channel Representation (PCR) was
developed in the context of the I2-DSI project to attack precisely
this problem, and thereby make possible a full service alternative to
content distribution mechanisms based on caching technology alone
[1]. Because PCR focuses on the problems associated with
mirroring of source objects, it draws from the substantial experience
in cooperative Internet mirroring that predates the Web [9, 11, 13].
It is also informed by more recent work on active networks from the
past decade, the same work that has been incorporated into an
Extensible Proxy Framework in order to add dynamic services to
cache-based content distribution networks, which are still based
only on capture and replay of Web responses [18].

2. CONTENT PORTABILITY AND
CHANNEL REPLICATION

A useful place to begin the discussion of content portability is
with the common distinction between “active” and “static” content.
Our view is that in the area of content distribution, the distinction
between active (dynamically interpreted) content and static (or
passive) data is blurred to the point of being meaningless. One
reason for this confusion is that the most common forms of Web
programming are declarative, and for that reason are not considered
to be forms of programming at all by the author/programmer. But
examining a few cases at close range suggests otherwise.

The most legitimately “static” content on the Web is a file
delivered by FTP; admittedly in this case, the bits stored on the disk
are not interpreted at all by the FTP server, but are simply passed
over a network link. But at only a slightly higher level of
complexity, simple HTML files are in fact interpreted by the HTTP
server to generate an HTTP response, even though they are often
thought of as static content. The most universal form of this
interpretation occurs when the server rewrites the URLs in
hyperlinks, or even more ambitiously, when the server processes
directives in the HTML and generates text to replace them in the
response. Moreover, HTML files are augmented by metadata that

determines how they are processed and what the nature of the
response generated should be: <META> tags can cause redirection
to another URL entirely, among other altered behaviors, and
password protection alters the behavior of the server, although not
the contents of the delivered file.

It is convenient to think of an HTTP response as if it were a
simple copy of the HTML file which generates it, as this allows us
to conceive of the “static” portion of the World Wide Web as a file
delivery mechanism, i.e. a form of communication network.
Caching technology can then be thought of as an extension of that
network. But the conclusion that we draw from a review of the facts
is that almost every form of Web content is in some measure
interpreted, and therefore liable to encounter portability issues. For
that reason a sounder operating assumption to make is that source
files are not passive data but programmed objects that must be
interpreted in order to generate the server’s response. We believe
that if solutions to the Web’s scalability problems take the
distinction between active and static content for granted and focus
on caching technology alone, they will be ill equipped to deal with
the Web as it really is, i.e. as a distributed system with chronic
programming and portability issues.

A few examples from ordinary Web authoring and content
management make obvious the relevance of this point of view to
questions of portability. While standard HTML processing is usually
portable, any server side includes that pages contain are server-
dependent and they may make reference to auxiliary files by file
name (rather than URL). This will tend to make them non-portable.
URLs for non-HTML file types, such as streaming media objects,
use metadata files that invoke local auxiliary programs and can
make explicit reference to file names. These local metadata files are
not, as a rule, portable. Again, many HTTP server features, such as
multi-lingual processing and security, are controlled through server
configuration files that are not standardized and that typically make
reference to local directory names. Finally, CGI programs and
servelets commonly make use of local interpreters, files, and other
resources through interfaces that are not portable across servers.

Once we begin to think of the Web as a distributed system with
standard programming and portability issues, then it becomes clear
that, as with other such systems, the key to portability is the use of
standard languages and application programming interfaces (APIs)
which can be interpreted uniformly on a broad class of execution
platforms. As things currently stand, the Web falls far short of
satisfying this condition.

HTML may be a standard language, but it comes with a
distressingly broad choice of APIs. These range from standard
HTML with no server-side directives, to HTML with a small class
of directives supported by many available HTTP servers, and finally
to HTML with powerful database access extensions supported only
by a small number of HTTP servers. Similarly, in typical HTTP
implementations, although servelets have a well-defined language
(Java) and API, CGI programs are arbitrary executable files that are
invoked by the HTTP server with no notion of their language or
API. CGI programs are typically implemented in an interpreted
language such as Perl, but a given CGI program may be compiled
binary. Interpreted languages, such as Java byte code or Perl, have
the benefit of placing an intermediary layer of software between the
code and the full power of the operating system and the machine
architecture. However, incompatibility between different versions of
the same language and the use of powerful, non-portable APIs can
eliminate such benefits. As a result, CGI programs may be highly

non-portable, and there is no metadata available to determine their
portability characteristics.

Now there are basically two strategies for achieving portability
in the face of this diversity of APIs. One approach says that we must
all agree on a single API and use only the features of that API in
order to achieve “write once, run anywhere” status. This is what
Java promises. The other approach requires only that code port
safely, not universally. According to this point of view, it is not
necessary for everyone to use a universally implemented language
and API, just that the choice be known and that the interpreter be
safe even if the API is violated. We term this freer and more open
approach descriptive, in contrast to prescriptive, one-language-only
approaches to portability.

It is worth noting that the one-language-only strategy for
content portability was attempted unsuccessfully in the early Java–
only Content Distribution products from Marimba in the context of
“desktop push.” More generally, we believe that the more expansive
goal of “write once, run anywhere” cannot be practically achieved in
a world where languages, APIs and execution platforms change
constantly and the behavior of the developer community is not
under centralized control. The approach to portability we have
developed, which is based on the Portable Channel Representation
(PCR), is an instance of a descriptive, metadata-based strategy that
offers more freedom to developers to choose their language and
API, but requires them, in return, to provide the CDN with critical
information characterizing the portability of the resulting content.
While PCR does not promise to make every Web site portable to
every platform, once the information characterizing portability is
encoded as PCR metadata, management software can check to see if
that content can be safely ported to a given target server.

3. THE PORTABLE CHANNEL
REPRESENTATION
3.1 The PCR Data Model

The Portable Channel Representation (PCR) was originally
defined in order to facilitate the creation of mirrors on the
heterogeneous servers of the Internet2 Distributed Storage
Infrastructure [1-3]. It addresses each of the problematic areas of
mirror creation highlighted above:
� Server-Independent Specification of Behavior — A PCR

description is an encoding of metadata (the eXtensible Markup
Language (XML) [6] and the Resource Definition Framework
(RDF)[17]) that specifies the behavior of the server in response
to a set of requests, collectively known as a “channel.” In
order to avoid dependence on configuration files specific to
particular server software, PCR specifies in a platform-
independent manner the source object and the method of
interpretation that should be invoked on any particular request.

� File-system-Independent Specification of Objects —References
to objects from within a PCR channel description do not name
them through their installed location in a file system directory
structure, but instead use local names defined by a “file store”.

The PCR description and the file store together define a complete
channel description that can be correctly implemented on any
platform that correctly interprets both elements.

PCR’s descriptive approach associates with each user request
both a source file and a type. The type specifies the language and
API of that file and is used to determine the interpreter that will be
used to generate a response. Since these types are not reflected in

the contents of the source file, but are specified by the PCR
metadata external to the file, a single source file may be treated as
having different types when accessed hrough different requests (e.g.
using different protocols and servers). Possible types include
standard HTML, GIF, 3Mb/s MPEG-1 video, Perl with a standard
minimal API (no file or network access), Java bytecode with an SQL
database access API.

Serv ice request s
ref erring to object o

Action
t.respond(o)

Interpreter
f or objects of ty pe t

Object o
of ty pe t Standard HTML

HTTP response Standard HTTPd ”http://www.x.com/info.ht m”

Figure 1: The PCR Behavior Model

API

The PCR data model is a language intended for the

specification of the behavior of a server. This language does not
support arbitrary behaviors (i.e. it is not a general model such as
Java), but instead works within a highly structured server behavior
model, shown in Figure 1. The central notion in PCRs server
behavior model is a request fulfillment rule, which can be thought of
as a pair consisting of a pattern and an action. When a request is
presented to a server and matches a pattern, the server responds by
performing the associated action. In concrete terms,

� a pattern consists of several fields which correspond to a
standard URL: domain, port, and object name, and

� an action is specified by a source file and a type.
Every type is associated with a method or interpreter, and the

action specified by the rule is to invoke that method on the specified
data file. For example, a request associated with a stored file with
type “Standard HTML” would be interpreted by a standard HTTP
server allowing no non-standard extensions.

Every source object type defines syntactic rules for data objects
of this type. We refer to these syntactic rules as the language in
which the object is expressed. If there is a single language with
multiple variants, we refer to these variants as APIs. Thus, HTML is
a source object language, but a specific set of allowable server
includes defines an API. Perl and Java byte code are also a source
object languages, and each of them may have multiple APIs. The
combination of language and API together define determine the
object type. The server must perform a combination of install- and
run-time checks to ensure that a particular object conforms to its
declared type.

The sum of all APIs constituting the channel is referred to as
the Channel API. Extending the functionality of PCR requires
introducing a new type, defining the interpreter and extending the
Channel API to include the new object type. New service types can
easily be added as they emerge, thus the PCR approach is highly
extensible. The current implementation of PCR (Section 5) supports
HTML, streaming media and server-side HTML extensions, but it
will be extended to support CGI execution (Perl, Java), database
access (read-only) and other APIs.

In section 4 below we present the RDF schema for PCR in
detail. But to understand the different aspects of that schema, as well
as the File Store API that complements it, it is helpful to be familiar
with the way in which it used to create CDNs based on full service
surrogates. The next few sections describe the different facets of the
PCR approach to creating CDNs.

3.2 PCR-based Content Distribution
PCR-based content distribution has the same goal as cache-

based content distribution, i.e. to serve content from distributed
servers preferably situated in proximity to end-users. In the example
(Figure 2) an Internet Service Provider (ISP) provides a PCR-based
distribution system for Web sites. To distribute a channel the
content provider publishes a channel to a point of distribution
located within the network of an ISP. From this point the ISP
distributes the channel to a number of PCR servers at the edge of his
network. Users of the ISP then access the channel locally through
PCR servers instead of the origin server, generally improving the
quality of their application experience in the process. Thus PCR
servers are surrogates, and the server at the distribution point plays
the same role as the “point of origin” does in cache-based CDNs.

www.x.com

Publication

Distribution

“www.x.com”

“www.x.com”

End User

End User

Frustrated
End User

Figure 2: Distribution of a channel using PCR

The distribution process can be divided into four sub processes,
sequenced as pictured below (Figure 3). They include

� Creation and publication of a PCR channel, also known
as content authoring (see sec. 5)

� Distribution of the channel to a number of PCR servers
� Installation of the channel on the PCR servers
� Service of the channel to end-users

 Serv ice Installation Distribution Authoring

Figure 3: The PCR Distribution Process - Logical View

Content Prov ider End User

In the distribution of a channel the metadata describing the different
aspects of the channel are separated from the source objects
(application files) that constitute its substance (Figure 4). This
separation is handled by the PCR tools and servers and is
transparent to both the content providers and end users.

Application
to be

distributed

Meta Data

Source Objects

Local
Representation

Distributed
Serv er

Figure 4: The PCR Distribution Process - Meta data and
source objects

The different software components of this system are shown in
Figure 5 below. A PCR-encoding of an Internet application is
generated using a Channel Creator or Channel Authoring tool.
Channel authoring tools, which can be an extension of current Web
authoring tools, creates PCR representation of this application and,
together with the application files (i.e. the channel source objects) is
publishes the channel to the Distribution Server. The Distribution
Server distributes the channel to a number of Channel Servers. The
Channel Server (or actually the Installer of the Channel Server)
generates a local representation of the channel, using the PCR-
representation. To complete the distribution process, the local
representation of the channel at the Channel Server is activated,
giving the end-user to local access to the channel with enhanced
quality of service.

3.3 Content Authoring for Highly Portable
Surrogates
In discussions of Content Delivery Systems (CDSs), the expression
“content authoring” refers not only to the creation of the actual
information or digital material that will get delivered, but also to the
process of modifying that material so that it is well adapted for the
mechanisms that the CDS will use to deliver it. In our approach to
creating highly portable surrogates, this process primarily focuses on
discovering and encoding the PCR metadata necessary to create
PCR-enabled surrogates from Web sites or other Internet
applications. Our experience shows that without the appropriate
tools, this tends to be a labor intensive and potentially error prone
task. To address it, tools need to be provided to create PCR
metadata for two different cases:

� PCR for legacy sites — Some of the metadata required to
PCR-enable an existing service entity, say a Web site, is
present in the embedding of the selected service entity in the
server directories of its Web host and the configuration files of
its servers. If a Web site uses only standard servers, then it is
possible to derive the PCR and create the file store
automatically from the file system. For instance, a Web site
which uses the Apache file server and a Real Audio streaming
server can be easily mined for PCR metadata.

� Native PCR channels — The other approach is to use a PCR-
based tool to author the channel from the start, entering the
necessary metadata directly and never embedding it in the file
system at all. While this approach is more ambitious from a
tool-development point of view, it guarantees that the required
behavior of the site is correctly expressed, and is not limited in
expressiveness by the capabilities of standard servers.

Tools that implement a mixed approach are also possible.
Structured authoring tools, which maintain their own internal
metadata structures, could also generate PCR as a publication
option. Thus a tool like Microsoft FrontPage might become a PCR
Channel-authoring tool, much as Microsoft Word has become an
HTML authoring tool. The key point in all these cases, however, is
that the discovery and encoding of the essential PCR metadata
should be as automated as possible, so as to maximize the
completeness and accuracy of the encoding and minimize effort for
the user.

3.4 PCR Publication
PCR also carries information concerning the publication of the

channel. Information is provided specifying date and time when the
channel should be made accessible, for how long it should be active
as well as when to delete it.

PCR introduces a level of indirection between the identity of a
source file and the service request that accesses it. A file may exist
in the file store, but unless the current PCR view of the channel
accesses it, it has no impact on the behavior of the node in serving
the channel. The ability to switch instantaneously between PCR
views allows us to atomically update a channel.

Instantaneous switching between PCR views is possible
because the PCR view is a much smaller data structure than the
source file, and a node can easily hold more than one. Thus, a PCR
file can be delivered and interpreted but held in an inactive state
until a synchronization event makes it the active view of the
channel. This feature allows simple, secure and seamless updates of

 File Store

PCR
Encoder

G
U

I
 File Store

Rev iewer

D
is

tri
b

u
to

r

File Store

PCR
Decoder

WAP

Real Serv er

Apache

Channel Creation Channel Distribution Channel Service

Content Provider ISP End user

Management

Figure 5: PCR Distribution Process – Software Components for Content Management

channels, be it a complete update of the entire channel or a partial
update of near-real-time information. It is even possible to maintain
different views of the channel for different sessions, if for instance a
session ID is encoded in the service request.

4. THE RDF SCHEMA FOR PCR
We have chosen the Resource Description Framework (RDF)

as the standard language for encoding PCR. RDF is a foundation
for processing metadata, providing interoperability between
applications that exchange machine-understandable information.
The RDF data model [16] defines a simple approach for describing
interrelationships among resources in terms of named properties and
values. RDF properties are used to represent attribute-value pairs
associated with resources, and they also represent relationships
between resources.

The data model, however, provides no mechanisms for
declaring properties, nor does it provide any mechanisms for
defining the relationships between properties and other resources.
That is the role of RDF Schema. The RDF Schema defined in [8] is
a collection of RDF resources that can be used to describe properties
of other RDF resources (including properties) defined by
application-specific RDF vocabularies. The RDF schema for PCR is
shown in figure 6.

Figure 6: The PCR RDF Schema

4.1 The Channel Schema
A Channel describes the behavior of the server in response to a

class of requests.
� channelType

The channeltype declares that the channel conforms to
the invariant which is associated with that type.

� channelObjects(Bag)
Each source object has associated with it a set of a set of
a server behaviors. Each behavior assigns a type to the
underlying data file in order to invoke the interpreter of
the appropriate type. The type is a function of the

protocol, port number and objectname used in the
request.
o behavior (Bag)
ß protocol

For instance, FTP or HTTP.
ß port

The port number on which the request arrives.
The server must listen on all such ports.

ß objectname
The objectname referenced in the request.

ß serviceType
The servicetype specifies the interpreter to be
invoked, such as HTTP, FTP, streaming
MPEG, Perl.

o source
ß pcrName

The URI of the source object data file.
ß fileLength

The length of the source object data file.
� channelProtection

One of the basic services offered by Web servers in
addition to interpretation of source objects is protection
of requests in a variety of protocols. In this simple
version of PCR, a single pattern specifies a set of
objectnames to protect, and then a set of access rules can
be specified for objects matching that pattern.
o pattern

A pattern which matches objectnames in requests.
o access(Bag)

An authorization indicates the protocol which is to
be protected, the type of protection to be used, and
the required credential.
ß authProtocol

For example, HTTP or FTP.
ß authType

For example, password/id or certificate.
ß require

The required credential
ß channelName

A unique name used for the channel by content
management utilities.

4.2 Publication Metadata
Because of the changing nature of Web services, it is necessary

to determine when the requests should be fulfilled.

� serveFrom
The server must not fulfill requests based on this channel
description before this starting date and time (on its local
clock).

� serveUntil
The server must not fulfill requests based on this channel
description after this starting date and time (on its local
clock).

� cachedUntil
After this time, falling serveFrom and serveUntil, the
channel content must not be allowed to reside in caches

(using protocol-specific cache control mechanisms to
ensure this). This allows atomic updates to be made at
the server after this time.

� deleteDate
A time, falling no sooner than serveUntil, when the
channel files should be deleted from the server.

4.3 Resolution Metadata
In order for client requests to reach a server, the channel must

be registered with one or more resolvers such as the DNS.
� resolverName

The name under which the channel should be resgistered
� resolverType

The resolver type associated with that name (e.g. DNS).

4.4 Published Channel
The information necessary to publish a channel and make it

accessible by clients consists of a channel specification, publication
metadata, and a set of resolver specifications.

� channel
� publication
� resolvers (Bag)

4.5 The PCR FileStore
A standard tool for the implementation of Web services is the

use of the native file system of the server which provides those
services to provide a mapping between client requests and stored
data. Thus, the filename field of an HTTP GET request is usually
interpreted as a file name relative to some root directory, determined
by the configuration of the HTTP server. While this is a convenient
implementation mechanism, reliance on this mapping can lead to
non-portability; for example:

� Early Microsoft file systems did not support long file
names or file extensions of more than three characters.

� Some embedded file systems do not support hierarchical
directory structures.

� File system permissions are sometimes used to
implement important security constraints but they are
not portable across operating systems.

� One direct approach to this problem would be to include
all data files along with their associated metadata in the
PCR description. Then no names external to the PCR
description would be needed, and portability of names
and other attributes would be ensured. However, this
leads to implementation issues because of the fact that
very efficient means exist for the movement of files
across processors, and encoding them in the PCR
description makes use of those mechanisms difficult.

We have chosen instead to factor the storage of files and their
binding to names into a separate facility we call the PCR FileStore.
A FileStore is simply a mechanism for storing files and associating
them with names that are local to the FileStore. When a FileStore is
moved between servers, the binding of names to files does not
change. This means that FileStore names can be used in the PCR
description file without any loss of portability. The metadata
associated with requests that access the files is still implemented in
the PCR description.

The problem with using the native file system for name-to-file
binding becomes more acute when files are accessed during the
interpretation of content, be it from a HTTP server-side include or as
input to a program written in Perl. In every case, current
implementations result in a local file name being used by the
interpreted code, and any use of naming which reflects global
knowledge of the file system directory structure will be non-
portable. The FileStore also solves this problem, as PCR allows for
the naming of local files that reside in the FileStore. The
combination of PCR and the FileStore can thus implement some
services normally provided by the local file system, eliminating
dependences on non-portable mechanisms.

A FileStore can be as simple as a tar or zip file archive which is
copied between servers as a single file transfer, or it can be a
directory which is distributed using an efficient differential update
mechanism such as rsync or even a proprietary block-level
replication mechanism implemented by a mass storage archive [19].
The intent is to allow data movement to be implemented in the most
efficient and cost-effective manner independent of the distribution
of the PCR description.

4.5.1 The PCR FileStore API
A File Store has an API, which allows the sender to pass it a

source file and return a File Store Name, which is meaningful only
to that File Store. The File Store Name is encoded in the PCR, and
delivered to the recipient along with the File Store, usually through
a separate mechanism. The receiver unpacks the PCR and uses the
File Store API to retrieve the source file using the File Store Name
found in the PCR.

Examples of File Store delivery mechanisms are transfer of an
archival image, rsync between file systems or block level mirroring
of disks. PCR is usually delivered as a stream to a connected socket,
although file transfer protocols such as FTP may also be used.

4.5.1.1 Transaction Management
� abort()

Abort transaction and rollback.
� beginTransaction(boolean)

beginTransaction locks the whole channel identified by
channelname.

� endTransaction()
endTransaction must end a transaction that was
started by call beginTransaction

� newTransaction(String)
newTransaction returns a transaction object which is
used to request service from FileStore.

4.5.1.2 FileStore Management
Current FileStore API implements transaction based

management. Typically, to do object management on a specific
channel you must request a transaction object from FileStore for that
channel. The reason for a transaction based API is that we have
experienced a need to synchronize object management on channels
to keep a PCR channel view consistent with the FileStore.

� deleteChannel()
deleteChannel removes channel and all it's bindings
from FileStore.

� newTransaction(String channelname)
newTransaction returns a transaction object which is
used to request service from FileStore.

� transfer(String host, int port, String userid, String
password)
transfer FileStore, bindings and source objects, to
remote host.

4.5.1.3 Object Management
As described in previous section, to perform object level

management on a channel you request a transaction object from the
FileStore. You use that object to perform following services:

� deleteObject(String crname)
deleteObject removes a binding from the FileStore
(removing source object if local copy in FileStore).

� getObjectPcrname(URL sourceLocator)
getObjectPcrname puts a source object in the FileStore
and gets the pcrname (filestore name) for the resource
that is local to the FileStore.

� getObjectSource(String pcrname)
getObjectSource returns the data of a source object
identified by a pcrname.

� getObjectSourceLocator(String pcrname)
getObjectSourceLocator returns the local locator to a
source object identified by a pcrname.

� setValidObjects(String[] pcrnames)
setValidObjects is used to make sure that application
view is consistent with FileStore state. That is, only
those bindings that are listed by pcrnames are valid, the
rest should be removed from.PCR Applications

5. SOFTWARE IMPLEMENTATION OF
PCR-BASED FULL SERVICE
SURROGATES

Swedish based Lokomo Systems has developed a solution to
the problem of the end-to-end management Content Distribution
Networks in heterogeneous environments using a full service
surrogate approach based on PCR. Lokomo’s software suite
supports the creation and management of Web sites and other
content-based services that can be automatically replicated to CDN
edge servers acting as full service surrogates. More detailed
examples showing how PCR technology makes this approach
possible are given below.

The Lokomo’s CDN software suite (Figure 7) is divided in
four components:

� The Channel Creator, which is a tool for creating PCR
channels,

� The Distribution Server, which is a server for storing
and forwarding channels,

� The Channel Server, which is the full service surrogate,
managing and executing channels at the edge of the
CDN, and

� The Management Server, which allows the CDN
operator to manage the system as a whole.

Since a key goal of this approach is to allow content providers to
focus on a single version of their content, and yet support the
local distribution of that content on CDNs managed by different
Internet Service Providers, this suite supports a variety of
operating platforms, network protocols, and web server types.

The Lokomo
Management Serv er

The Lokomo
Channel Creator

The Lokomo
Distribution Serv er

The Lokomo
Channel Serv er

Figure 7: Lokomo Software Suite

Application
to be

distributed

Meta Data

Source Objects

Local
Representation

Distributed
Serv er

The Lokomo software suite has been designed to embody all

the important characteristics that CDN builders will expect from an
adequate CDN software suite, regardless of the approach it takes:
the scalability and redundancy to handle a large number of complex
nodes under extremely heavy traffic; the flexibility to support
various special system configurations and network topologies;
requisite portability to manage heterogeneity in the edge server
environment; robust extensibility to third party application servers
that can provide new types of content and services to end users; and
ease of use that supports agile control of the CDN from a single
point in the network.

Experiences we have already had from two widely different
applications illustrate some of the qualities that set the PCR
approach apart. In particular Lokomo software has been used to
create PCR-based full service surrogates (i.e. channel servers) that
support active content in the form of Apache Server Side Includes
(SSIs) and Java Servlets. In addition, the use of PCR extends
beyond web sites to interactive services. We successfully use the
representation for distributing services like streaming media and
games.

Both these application examples have provided useful
experience in supporting active web content with PCR technology.
The examples described here illustrate very different requirements
on the interpretation of content in the surrogate in two examples:

� An ISP has very high requirements that code port safely
even when the API is violated. Many different content
providers share the ISP's surrogates and the services
must not interfere with each other.

� An ASP on the other hand is in full control of a number
of dedicated surrogates. The ASP require a much more
powerful API in the surrogate and care less about
competition of shared resources as his service is the only
one executing on the server. Consequently, if the API is
violated only his service will suffer.

5.1 Example 1: Distributed Web Hosting with
Server Side Includes

The Lokomo software suite is used by a large ISP network to
manage distribution of Web sites from their Web hotel to their

distributed Web servers. A content provider can gain access to
distributed hosting services with minimum effort simply by building
their Web site on the hotel. Content distribution is initiated and
supervised by the ISP from an easy-to-use web interface. By moving
the rich, interactive and executable content to the edge of the access
network the end-users experience of the service is significantly
increased.

Web sites located at the ISP Web hotel are translated into PCR
by an authoring tool (the Channel Creator) automatically extracts
metadata from the installed source files. The language and API used
by the content provider in constructing their Web site is standard
HTML extended with Lokomo’s dialect of Apache Server Side
Includes (Lokomo Apache SSIs). SSIs are directives embedded in
HTML pages that the server parses and interprets before the page is
served to the Web client. Interpretation of a directive generates an
HTML fragment that replaces the SSI directive in the page. While
there are several different dialects of HTML augmented with
different directives implemented by specific Web servers, Apache
was chosen due to its popularity.

Every Apache SSI directive takes an argument that specifies
some value or file from the server’s execution environment, and the
safety of the directive depends on which directives are allowed and
the values allowed for their parameters.

� The include and exec directives name files in the
server’s environment, in the former case for textual
inclusion in the HTML page and in the later case for
execution and inclusion of their output in the page. The
standard implementation finds these files in the file
system directory in which the HTML page resides. In
the Lokomo dialect, include names are bound in the
PCR to files in the File Store, and exec names are
restricted to a fixed set of programs that are installed in a
distinguished local directory associated with the server.

� Other directives, such as echo and set, name variables
which, in the standard implementation, may reflect more
of the server’s execution environment than is safe or
portable. The Lokomo dialect restricts these variables to
a small, portable set.

By restricting the scope of Apache SSIs to files which are part
of the channel, to executing a standard and restricted set of external
programs, and to accessing a standard and restricted set of
environment variables, Lokomo’s Apache SSI provides a safe and
highly portable API for applications requiring a moderate level of
execution on the Channel Server.

5.2 Example 2: Distributed Media
Management using Java Servelets

A commercial service provider with a very large and processor-
intensive Internet service deploys the Lokomo software suite in
order to increase end-users quality of service for CPU-intensive
applications. The channels are comprised of hundreds of thousands
of large objects accessed by end users all over the world. Access
possibilities and access rights differ from user to user and follows
different services schemes. Highly CPU-intensive interpretation is
performed on the source objects to generate responses that require
fast and secure download to the end-user. The Lokomo
implementation replaces an earlier one based on a centralized ASP
model that suffered from unpredictable delays and slow delivery
speeds. Using Lokomo software, the source objects are encoded in

PCR and distributed to a number of data centers. The whole
distribution chain is managed by the Lokomo system, including
selected parts of the massive central database and service
application.

The executable portion of this service is implemented using
Java servlets (JSP), which are invoked from directives embedded in
standard HTML pages just as they are for SSI. And as in the case of
SSI, files names are mapped to the FileStore using PCR bindings.
However, the standard Java servelet API includes very powerful
features. For example a servlet can create a socket and connect to
another server or access a local read-only SQL database. Such
features can cause conflicts on a surrogate shared by many different
services and content providers. In this specific example, few
restrictions have been applied to the standard API, and the ASP has
designed his service carefully, making sure that the servlets will port
to his distributed environment. Misuse of this API, could cause the
service to fail.

6. CONCLUSION
The notion of Web surrogates is usually associated with caches

and reverse proxies that do not replicate interpreted content.
Nonetheless, mirroring is an obvious solution for the problems of
scalability in the Internet, and has long been used in the context of
distributing files by FTP. Mirroring has sometimes been applied to
the case of more general Web services, but at a cost in human effort
that is proportional to the complexity of interpreted content than
must be replicated and the heterogeneity of operating environment.
In this paper we have presented the Portable Channel
Representation (PCR), which is a mechanism for the automated
management of replicated or mirrored content that addresses the
problems of portability introduced by interpreted or "active" content.
It is based on this idea: if creating an abstraction of the operating
environment in which the interpretation of source objects occurs can
automate the management of mirrored content in heterogeneous
environments, then surrogates and CDNs based on mirroring are
feasible. The PCR-based system now being developed promises to
give us back a natural and intuitive solution to the problem of
scalability in Internet content, which must otherwise be addressed
by more intricate and more limited solutions based on HTTP
caching.

The World Wide Web was created around a simple and highly
structured notion of content (HTML) and a standard protocol for
delivering it (HTTP). Of the many benefits that could accrue from
the adoption of the Web as the a universal fabric for information
interchange, some derive from the use of HTML as a uniform
content language, including the ability to use a single encoding of
content for many diverse purposes and the ability to use a single
encoding of content across many different computing platforms.
Other benefits accrue from using HTTP as uniform delivery
mechanism, including the ability for a single server platform to
fulfill requests from diverse clients and the ability to develop
networking infrastructure which is adapted to the characteristics of
that protocol. As the Web has developed, the growing domination
of the latter has meant the progressive diminution of the former.

The source of the problem is that, as a language, HTML
succumbed to a universal tendency in the development of computing
systems: programmers will modify any tool until it becomes a fully
general computing environment, with little or no respect for the
strong properties intended by the original designer. That is how
functional programming languages get augmented with imperative
constructs, graphics formats become multimedia scripts, and

declarative text markup languages become page layout tools. The
Web has been augmented by sources of content, such as CGI scripts,
which bear no resemblance to HTML, but which do conform to
HTTP and magnify the power of the Web as a delivery mechanism.
As a consequence, the Web becomes something amazing: a medium
for commerce and entertainment, a competitor for the television and
the telephone, a fabric for human interactions of all sorts. In the
process, however, many of the strong properties that might have
made Web content more manageable have been lost.

The move towards the use of XML in the Web is providing a
framework for many communities to define highly structured
notions of content that are intended to provide manageability, and
their intent is to defend those tools against extensions which would
violate their fundamental design principles. The Portable Channel
Representation is an attempt to define a language that factors out,
from the myriad mechanisms (languages and APIs) for generating
HTTP responses, enough commonality and structure to allow for
automated management of content. If it succeeds it will restore to
the management of Web content a property that some people are not
even fully aware has been lost — the independence of content from
the execution environment of the server, i.e. portability.

Standards activity in Web content has focused on the format
and interpretation of source objects: HTML, XML, GIF, JPEG,
MPEG, etc. These activities have enabled a generation of content
authorship and management tools that can accurately preview the
behavior of Web browsers, publish entire Web sites into
heterogeneous operating environments, and modify and combine
Web content that has been developed independently. It has not been
possible, however to achieve the same degree of platform
independence for more highly interpreted content due to a lack of
standards, and this has limited the degree to which content
management can be automated in an interoperable manner.
Acceptance of a representation standard for interpreted content
generally, such as PCR, would overcome this limitation and enable
a much greater degree of automation in content management across
heterogeneous platforms.

REFERENCES
[1] Beck, M., Chawla, R., Dempsey, B. and Moore, T., Portable

Representation for Internet Content Channels in I2-DSI. in 4th
International World Wide Web Caching Workshop, (San
Diego, CA, 1999).

[2] Beck, M. and Moore, T. The Internet2 Distributed Storage
Infrastructure Project: An Architecture for Internet Content
Channels. Computer Networking and ISDN Systems, 30 (22-
23). 2141-2148.

[3] Beck, M., Moore, T. and Dempsey, B., Internet2 Distributed
Storage Infrastructure, Innovative Computing Laboratory,
University of Tennessee, 2001. http://dsi.internet2.edu

[4] Berners-Lee, T., Fielding, R. and Frystyk, H., Hypertext
Transfer Protocol -- HTTP/1.0, Internet Engineering Task
Force, 1996. http://www.w3.org/Protocols/HTTP/1.0/spec.html

[5] Bowman, C.M., Danzig, P.B., Hardy, D.R., Manber, U. and
Schwartz, M.F., The Harvest Information Discovery and
Access System. in The Second International WWW
Conference, (Chicago, IL, 1994), 763-771.

[6] Bray, T., Paoli, J. and Sperberg-McQueen, C.M., Extensible
Markup Language (XML) 1.0, World Wide Web Consortium,
2000. http://www.w3.org/TR/REC-xml

[7] Brewington, B. and Cybenko, G. How dynamic is the Web?
Computer Networks, 33 (1-6). 257-276.

[8] Brickley, D. and Guha, R.V., Resource Description Framework
(RDF) Schema Specification 1.0, World Wide Web
Consortium, 2000. http://www.w3.org/TR/rdf-schema/

[9] Browne, S., Dongarra, J., Grosse, E. and Rowan, T. The Netlib
Mathematical Software Repository (Accessible at
http://www.dlib.org/) D-Lib Magazine, 1995.

[10] Coar, K. and Robinson, D., The WWW Common Gateway
Interface Version 1.1, 1999. http://CGI-Spec.Golux.Com/draft-
coar-cgi-v11-03-clean.html

[11] Cooper, G., Hill, J., Kelly, B., Rogerson, R., Rusbridge, C.,
Tedd, M. and Wiseman, N., CEI/ACN Working Group on
Mirror Services: Final Report, Joint Information Systems
Committee, 1998. http://www.jisc.ac.uk/pub98/mirrors.html

[12] Cooper, I., Melve, I. and Tomlinson, G., Internet Web
Replication and Caching Taxonomy, IETF Internet
Engineering Working Group, 2001.
http://www.wrec.org/archive/200011/att-0093/01-draft-ietf-
wrec-taxonomy-06.txt

[13] Grosse, E. Repository Mirroring. Journal on Mathematical
Software, 21 (1).

[14] Houh, H., Lindblad, C. and Wetherall, D., Active Pages:
Intelligent Nodes on the World Wide Web. in First
International Conference on the World-Wide Web, (Geneva,
Switzerland, 1994).

[15] Javasoft, Java Servlet Specification v2.3, Sun Microsystems,
2000.
http://java.sun.com/aboutJava/communityprocess/review/jsr05
3/servlet23_PublicDraft1.pdf

[16] Lassila, O. and Swick, R., Resource Description Framework
(RDF) Model and Syntax Specification, World Wide Web
Consortium, 1999. http://www.w3.org/TR/REC-rdf-syntax/

[17] Swick, R., Miller, E., Schloss, B., Singer, D. and Brickley, D.,
Resource Description Framework (RDF), World Wide Web
Consortium, 2001. http://www.w3.org/RDF/

[18] Tomlinson, G., Orman, H., Condry, M., Kempf, J. and Farber,
D., Extensible Proxy Services Framework, Internet
Engineering Task Force, 2000. http://www.ietf.org/internet-
drafts/draft-tomlinson-epsfw-00.txt

[19] Tridgell, A. and Mackerras, P. The rsync algorithm, Australian
National University, Canberra, Australia, 1996.

