
Internet Backplane Protocol – Test Language v 1.0

Alessandro Bassi Xiang Li

I. INTRODUCTION

In this paper the IBP-Test Language (IBP-TL) is
specified. The IBP-TL is a langauge and a set of
tools developed to test the correct functionality
of the IBP depot and of the Client Library, and
the semantics of the IBP protocol. It cannot be
used for any other purpose, as the data used for
testing cannot be set and are completely
meaningless. For more information about IBP,
please refer to [2]; for a complete description to
the API, please refer to [1]

II. SYNTAX

A. Comments

The character % introduce a comment. The
comment symbol has to be at the beginning of
the line, and the whole line is considered as
comment (therefore ignored).

B. Keywords

The Table 1 represents the keywords used in
IBP-TL. Despite some of those might be used as
varaible names without causing an error, such
use is strongly discouraged.

C. Variables

In the IBP-TL space there are only three
variables:

- DEPOTalias host port
- ATTRIBUTES alias storage_type

reliability duration
- TIMER alias ClientTimeout ServerSync

The first variable class links an alias to an IBP
Depot, which is defined as host :port as usual.
The second links an alias to a set of attributes;
the storage_type attribute can be any of the
canonical IBP types, that is ByteArray
(expressed with BA), Buffer (BU), FIFO Queue
(FI) or Circular Queue (CQ); the reliability can
be any of the canonical IBP reliabilities, that is
Stable (ST) or Volatile (VL). The duration can

be –1 (permanent), or the number of days that
the capability is supposed to live.
The third variable class links an alias to a client
timeout and to a server timeout; the values are
expressed in seconds.
More information about these IBP internal
structures can be found in [1]

D. Declarations

API

Begins an area where a sequence of API calls is
made. The area must be closed by an END
statement. Cannot be nested.

Ex :
API
AL depot T1 1024 A1 C1
ST C1 T1 1024
LD C1 T1 1024 0
MA DEC C1 T1
END

CHRON

Starts a timer. This call must be within an API
area. The timer is stopped by an END statement.
Can be nested.

Ex :
API

CHRON tim
CHRON storeT

REPEAT 1000
ST C1 T1 1024
END

END
CHRON loadT

REPEAT 1000
LD C1 T1 1024 0
END

END
END

PRINT tim
PRINT storeT
PRINT loadT
END



Fig. 1 – reserved Keywords

END

Closes an area.

ERROR

Allows the interpreter to either ignore the errors,
or to stop execution. Its syntax is :
ERROR IGNORE
ERROR STOP
The area are closed by an END. Cannot be
nested.

NB this directive is not implemented in the
actual version of the code

PARALLEL

Starts an area where the code has to be executed
in parallel threads. Has to be used with the
THREAD directive; other API instructions have
to be included between THREAD … END areas.
All THREAD areas are executed in parallel; all
instruction within any THREAD … END area
are executed sequentially. Closed by END.
Cannot be nested.

Ex :
PARALLEL

THREAD
ST C1 T1 1024
END
THREAD
LD C1 T1 1024 0
END

END

PRINT

Prints the variable that follows

Ex:
PRINT depot

PROTOCOL

Begins an area where a sequence of PROTOCOL
calls is made. The area is finished by an END
statement. Cannot be nested

Ex :
PROTOCOL
OUT 0 FD string DATAVAR NULL
IN 0 FD IBP_OK size
END

REPEAT n

Indicates an area to be repeated n times. The area
is closed by an END. Can be nested.

Ex:
API
REPEAT 10

AL depot T1 1024*100 A1 C1
REPEAT 100

ST C1 T1 1024
END
REPEAT 100

LD C1 T1 1024 0
END
MA DEC C1 T1

END
END

AL API ATTRIBUTES CHRON
CNG CP DEC DEPOT
DS END ERROR IN

INC INQ LD MA
MC OUT PARALLEL PERFTIMER

PRB PRINT PROTOCOL REPEAT
SET SLEEP ST THREAD

TIMER



SET

Begins an area where variables are set. The area
is finished by an END statement. Cannot be
nested

Ex :
SET
DEPOT depot toto.cs.utk.edu 6714
END

SLEEP n

Stops the execution of the script for n seconds.

THREAD

Starts an area where the code has to be executed
sequentially. Has to be used with PARALLEL.
Closed by END. Cannot be nested. See
PARALLEL for more details.

E. API calls

AL

Calls IBP_allocate. The syntax is :
AL depot timer size attributes capname

ST

Calls IBP_store The syntax is :
ST capname timer size

CP

Calls IBP_copy. The syntax is :
CPreadcapname writecapname timer size offset
NB : the timer is the same for both source and
destination

MC

Call IBP_mcopy. At present, this call is not
implemented yet.

LD

Calls IBP_load The syntax is :
LD capname timer size offset

MA

Calls IBP_manage. The syntax is :
MA managecommand capname timer
Managecommand can be any of the following :
INC – IBP_INCREMENT
DEC – IBP_DECREMENT
CNG – IBP_CHANGE
PRB – IBP_PROBE

DS

Calls IBP_status. The syntax is :
DS statuscommand depot timer [stablestorage
volstorage duration]
Status command can be any of the following :
INQ – IBP_ST_INQ
CNG – IBP_ST_CHANGE
The last 3 fields are required if the command is
CHANGE, ignored otherwise.

NB: There is intentionally no possibility to set
the password; IBP-TL will use as a depot
password ‘IBP’. As this tool is made just for
testing, we believe it’s not safe to give it the
possibility of modifying real allocation space in
real depots; therefore, we limit this command to
depots which have the standard IBP password.

F. Protocol calls

The PROTOCOL calls are made to test the
robustness of the server, in case of a badly-
formed IBP message, and the semantics of the
protocol itself. In this section only two
commands are allowed.

IN

Specifies a communication unit that has to be
received from an end point

OUT

Specifies a communication unit that has to be
sent to an end point

In a PROTOCOL area, the first sub-command
must be OUT; its first parameter shows the type
of IBP call, and the number of parameters. As an
example, we provide here a description of the
API calls decomposed into PROTOCOL calls



IBP-allocate
PROTOCOL
OUT ibp_allocate depot timer size attributes
capname
IN data depot timer size attributes capname
END

IBP-store
PROTOCOL
OUT ibp_store capname timer size
IN size ibp_store capname timer size
OUT data ibp_store capname timer size
IN data ibp_store capname timer size
END

IBP-load
PROTOCOL
OUT ibp_load capname timer size offset
IN size capname timer size offset
IN data capname timer size offset
END

IBP-copy
PROTOCOL
OUT ibp_copy source-cap target-cap timer size
offset
IN data source-cap target-cap timer size offset
END
Only the first source-cap is valid.

IBP-manage
PROTOCOL
OUT ibp_manage sub-command capname timer
IN OK sub-command capname timer
END

IBP-status
This call has two different impementations,
according to the STATUS command :

PROTOCOL
OUT ibp_status INQ depot timer
IN OK INQ depot timer
END

PROTOCOL
OUT ibp_status CNG depot timer stablestor
volstor duration
IN size CNG depot timer stablestor volstor
duration
OUT data CNG depot timer stablestor volstor
duration
IN data CNG depot timer stablestor volstor
duration
END

NB. As explained in the previous section, there
is no possibility to set the password, as the
password is the IBP standard one (‘IBP’).

G. Examples

i .The following script is equivalent to the actual
ibp-smoketest for windows :

SET
DEPOT D1 toto.cs.utk.edu 6714
DEPOT D2 titi.cs.utk.edu 6714
TIMER T1 2 2
ATTRIBUTES A1 BA ST -1
END
API
AL D1 T1 1024 A1 C1
ST C1 T1 1024
AL D2 T1 1024 A1 C2
CP C1 C2 T1 1024 0
MA PRB C2 T1
DS INQ D2 T1
LD C2 T1 1024 0
MA DEC C1 T1
MA DEC C2 T1
END

ii. The following script is equivalent to the old
ibp-quicktest

SET
DEPOT D1 toto.cs.utk.edu 6714
TIMER T1 2 2
ATTRIBUTES A1 BA ST 3600*24
END
API
AL D1 T1 1024*1000 A1 C1
REPEAT 1000
ST C1 T1 1024
END
REPEAT 1000
LD C1 T1 1024 0
END
MA DEC C1 T1
END

III. T ESTSHELL

This shell offers to the user a simple interface to
the test driver. Since the purpose of the test
driver is very basic, the shell will only accept the
following commands.



More filename: With this command, the user can
view the test script file. The shell will invoke a
“more” command to show the file to the user.
Vi filename: With this command, the user can
edit the test script file. The shell will invoke a
“vi” command to edit the file.
Run filename: Run the test script file to do the
test. This is the part of the software we
developed. We will discuss the detail design of
this part in the following paragraphs.
Exit: Quit from the test shell.

When the test shell is invoked, the prompt is set
to IBP-TL>

IV. I NTERPRETER

To run a test, we need to make the script file as
the input for the interpreter. The output of the
interpreter will be used as PRINT (or error)
information during the execution.
To interprete the test script file we need to load
the whole file into memory. Since any line can
hold one and only one command (or comment
line), we load the file line by line.
The interpreter will then use a state machine to
interpret and execute the script file.

SET area:
Most of the variables are defined in the SET
field. In this field, DEPOT, ATTRIBUTES,
TIMER can be used to define variables. All
variables are recorded in a variable table.

API area:
This area is composed of sequence of API calls.
There are seven IBP API calls and some other
calls, such as REPEAT, CHRON, SLEEP and
PRINT. In this area, most of the commands will
be interpreted and executed sequentially. They
will be interpreted into the relative IBP calls, and
the parameters defined in SET area can be found
in the variable table by comparing their names.

However, there are three exceptions in this area,
CHRON, REPEAT and PROTOCOL.
For CHRON, we need to invoke a special
function. First, it defines a new timer in the
variable table and starts it. Then, it interprets
and executes the commands in its field
sequentially. When it meets the relative END, it
stops the timer and quit from the function.
For REPEAT, we also need to call a special
function. This special function first remembers
the line where the loop started. Then, it interprets

and executes the commands in its field
sequentially. When it meets the relative END, it
comes back to the line where the loop started.
After repeating the number of times set in the
REPEAT line, the function quits.
It is interesting to notice that those two calls can
be nested.
For PROTOCOL, the interpreter fills the
Communication Units and executes them,
skipping the IBP Client Library. This way, the
semantic of the communication and the
robustness of the server can be tested.

END:
When the file is over, the interpreter will stop,
and the CPU control will be returned to the Test
Shell.

V SOFTWARE STRUCTURE

A. Important Data Structures

i. Variable:

Struct
{

char *name;
int type;
void *value;

}*variable;

This is the structure that represents an IBP-TL
variable. There is a global array of this structure
for all the variables used in one test script file.
When the API uses a variable defined in the SET
area, th einterpreter needs to search the whole
variable table to find the variable which has the
same name; but, as the number of variables is
normally rather small, this has no (or extremely
little) performance drawbacks. The types of the
variables will be defined later.

ii. Line Command

Struct
{

int argc;
char *argv;

} *line_cmd;

This is the structure used to represent a
command line. There is a global array of this
structure for the whole script file. We have to
read the whole script file into memory, to allow
loops.



And there are some other data structures for
global variable, which may be decided later.

B. Some Illustration of the Test Driver

We don’t check the grammar of the script file at
first. If we find any mistake of the syntax while
executing the file, the execution will stop at the
current line, unless otherwise defined with the
ERROR directive. The test script can be only
accepted as a file. The test shell can’t recognize
the test language, which can only be recognized
by the interpreter.
At this time, some functions are not yet
implemented (like MCOPY and ERROR), and
will be added to the test driver at a later date.

REFERENCES

1. Bassi, A., Beck, M, Plank, J, Wolski, R.
Internet Backplane Protocol : API 1.0,
University of Tennessee, Knoxville,
2001.

2. Plank, J., Beck, M, Elwasif, W, Moore,
T, Swany, M, Wolski, R, The Internet
Backplane Protocol: Storage in the
Network. in NetStore99, (Seattle, WA,
1999).


