
Internet Backplane Protocol: API 1.0

Alessandro Bassi Micah Beck James S. Plank Rich Wolski

Department of Computer Science
University of Tennessee
Knoxville, TN 37996

[abassi,mbeck,plank,rich]@cs.utk.edu

Abstract

In this document, we present a description of the IBP version 1.0 API. The current implementation of IBP supports only
synchronized client requests; all client IBP calls will block pending completion on the server(s) side, or the expiration of the
client’s timeout. We present the C-language prototype of every call along with a detailed description of the data structures,
success behavior and error conditions involved in that call. Failure of an IBP client call is indicated by a return value of0,
or NULL , with a special variable (IBP errno) set to the appropriate error code.

1 IBP Data Structures

A few data structures are used through the IBP world.

1.1 IBP capability

This is the basic building block of IBP. Its format is:

ibp://hostname:port/key/WRMKey/WRM

� hostname:portThe two above fields are also calledIBP depot:

variable name variable type
host char *
port int

This table is pretty self-explaining.

� key The key can be roughly considered to be the filename.

� WRMKey The WriteKey/ ReadKey/ ManageKey is a value that allows the access to the right key for writing, reading,
and managing.

� WRM This field can have only three values, and is linked to the field above. The values are:

– WRITE

– READ

– MANAGE



1.2 Various tables

1.2.1 IBP attributes

variable name variable type
duration time t
reliability int

type int

� duration : specifies the time at which the allocated storage area will be automatically purged from the pool of storage
areas managed by the server. Time is specified in seconds since the epoch (as returned by UNIX’stime(2) function).
A value of0 indicates permanent status for the allocated storage area (it’ll be only purged when no more clients have
read access to it, otherwise it will be kept alive according to the reliability property).

� reliability : is a flag that determines how reliable the allocated storage area will be. The current version of IBP
supports two levels of reliability:

– IBP STABLEwhich guarantees the existence of the allocated storage area until it is removed due to lack of
readers as explained above.

– IBP VOLATILEwhich declares the allocated area to be volatile, in the sense that the corresponding IBP server
can reclaim storage allocated to this area whenever site administration and/or IBP server policy mandates such
move. Stable storage is never reclaimed by IBP server as long as at least one client has read access to that
storage.

� type is a flag that determines the type of storage allocated. The current version of IBP supports four types of storage:

– IBP BYTEARRAYwhich treats the allocated area as a flat byte array. This will have the following implications
on future accesses to that storage area:

� Requests for read to the allocated area will be denied if there are not enough data to satisfy the read request
at the time the request is received by the IBP server.

� Requests to write (append) to the allocated area will be denied if it leads to the total size of the storage area
exceeding the maximum allowable size specified insize.

� A maximum of one write operation can be actively writing to the storage area at any given time; other write
requests received by the server are queued pending completion of the running write process.

� No limit is imposed on the number of simultaneous read accesses to the storage area. In addition, due to
the use of append-only semantics for write operations, a write operation can be simultaneously active with
anynumber of read operations to the same storage area.

– IBP FIFO which causes the allocated storage area to be treated as a FIFO queue, with the following implica-
tions:

� Read data is removed from storage area once read.

� Read requests will be blocked if not enough un-readdata is available in the storage area. In addition,
noupper limit is placed on the size of data in read requests.

� Write requests will be blocked if there is not enough space in the storage area to complete the write oper-
ation. In addition, there is no upper limit on the size of data involved in a write operation to the storage
area.

� Blocked operations will be un-blocked only when there is more data to read (blocked read operation) or
available space to write (blocked write operations)

� A maximum of one write operation and one read operation can be simultaneously active at any given time.
Further requests are blocked pending completion of running operations.

– IBP CIRQwhich causes the allocated storage area to be treated as a Circular Queue, with the following impli-
cations:

� Read data is removed from storage area once read.



� Read requests will be blocked if not enough un-readdata is available in the storage area. In addition,
noupper limit is placed on the size of data in read requests.

� Write requests willNOT be blocked if there is not enough space in the storage area to complete the write
operation, but will overwrite the beginning of the queue. In addition, there is no upper limit on the size of
data involved in a write operation to the storage area.

� Blocked operations will be un-blocked only when there is more data to read (blocked read operation).

� A maximum of one write operation and one read operation can be simultaneously active at any given time.
Further requests are blocked pending completion of running operations.

– IBP BUFFERwhich causes the allocated storage area to be treated as a restricted-access flat storage area, with
the following properties:

� Only one process can be actively accessing the storage area for read and/or write operation at any given
time. Other requests are blocked pending completion of theone that has access to the storage area at any
giventime.

� All write operations start at the beginning of the storage area, overwriting any data that had been stored
there previously (even if it had not been read).

� The amount of data available to a read operation at any given time is the amount that had been stored by
the last write call.

1.2.2 IBP set of caps

variable name variable type
readCap IBP cap
writeCap IBP cap

manageCap IBP cap
The capabilities included in anIBP set of capsobject allow the client read access, write access, and management access

to a particular storage area, respectively.

1.2.3 IBP CapStatus

variable name variable type
readRefCount int
writeRefCount int

currentSize int
maxSize ulong t

attrib IBP attributes
readRefCount andwriteRefCount hold the reference count for the read and write capabilities respectively (on return

from anIBP PROBEcommand) and are ignored for the otherIBP manage()commands.currentSizeholds the current size
of data stored in the underlying storage area (for storage areas of typeIBP FIFO andIBP CIRQ it holds the maximum size
of the underlying storage area).maxSizeholds the maximum size of the storage area, whileattrib holds the storage area
attributes as defined earlier.

1.2.4 IBP DptStatus

variable name variable type
StableStor ulong t

StableStorUsed ulong t
VolStore ulong t

VolStoreUsed ulong t
duration long

StableStorandVolStor are the Stable Storage size and the Volatile Storage size respectively, whileStableStorUsedand
VolStorUsedare the Stable Storage used and the Volatile Storage used. TheDuration parameter is the max duration.



1.2.5 IBP timer

variable name variable type
ClientTimeout int

ServerSync int
The two timers have a completely different function. TheClientTimeout indicates the time the application is willing

to wait for a response from the server. This parameter is used to improve the fault-tolerance of the IBP Client Library, to
prevent waiting forever from an answer from a hanged server; or in case the network connection is particularely bad, or a
very high latency time. TheServerSyncis used as an”or” condition: i.e., in a IBPload operation, the application program
can ask forN bytesor whatever gathered afterServerSynctime. This can be very helpful when another client is writing on
the same media, and the application asking to load the data does not know how many bytes are written, but it’s willing to
wait for some time before giving up.

2 IBP Allocate
variable name variable type

parameters depot IBP depot
timeout IBP timer

size ulong t
attr IBP attributes

return value IBP set of caps
IBP allocate()allocates a remote storage area on the hostdepot. The allocated area has a maximum possible size of

sizebytes, and storage attributes, defined byattr .
Return values
Upon success,IBP allocate()returns anIBP setof capsobject. Otherwise, it returns aNULL pointer and setsIBP errno

to one of the following values defined in”ibp protocol.h”

� IBP INVALID PARAMETER : One or more of the parameters to the IBPallocate() call has an invalid value (e.g.
NULL targetHost, invalid entry inattr, ...)

� IBPE CONNECTION : An error has occurred while trying to connect to the IBP server running ontargetHost.

� IBPE SOCK WRITE : An error has occurred while trying to write to the socket connection to the IBP server.

� IBPE SOCK READ : An error has occurred while trying to read response from the IBP server.

� IBP BAD FORMAT : Response from the IBP server does not have the expected format, or the IBP server received
a badly formatted request.

� IBP INVALID CMD : The IBP server has received a command it does not recognize.

� IBP WOULD EXCEED LIMIT : Granting the request would cause the IBP server to exceed the maximum storage
limit allocated to the storage category defined inattr.

� IBPE FILE ACCESS : The IBP server has encountered an error while trying to access one or more of its internal
files that control access to the storage area.

� IBPE INTERNAL : The IBP server has encountered an internal error while processing the client’s request.

� IBP TYPE NOT SUPPORTED: A request to allocate a storage area of typeIBP FIFO was made to an IBP server
that does not support this type.



3 IBP store
variable name variable type

parameters cap IBP cap
timeout IBP timer

data char *
size ulong t

return value ulong t
IBP store() storessizebytes starting atdata in the storage area accessed through the IBP capabilitycap. For this call

to succeed,cap must be awritecapreturned by an earlier call toIBP allocate(), or imported from the client which made
theIBP allocate()call. IBP store() is a blocking call that only returns when the required size of data is successfully stored
at the desired storage area accessed through the IBP capabilitycap, or an error causes the call to abort prematurely. The
call appends data to the end of any previously stored data at the storage area accessed throughcap for storage areas of type
IBP BYTEARRAY, IBP CIRQandIBP FIFO. Data written to a storage area of typeIBP BUFFERoverwrites any previous
data (starting at the beginning of the buffer). If aServerSynctime is set, the call will return either if all the data has been
written, or the time has expired.

Return values
Upon success,IBP store() returns the number of bytes written. Otherwise it returns0 and setsIBP errno to one of the

following error codes:

� IBP WRONG CAP FORMAT : The IBP capabilitycapdoesn’t have the proper format.

� IBP CAP NOT WRITE : The IBP capabilitycap is not a write capability.

� IBPE CONNECTION : An error has occurred while trying to connect to the IBP server running ontargetHost.

� IBPE SOCK WRITE : An error has occurred while trying to write to the socket connection to the IBP server.

� IBPE SOCK READ : An error has occurred while trying to read response from the IBP server.

� IBP BAD FORMAT : Response from the IBP server does not have the expected format, or the IBP server received
a badly formatted request.

� IBP INVALID CMD : The IBP server has received a command it does not recognize.

� IBP CAP NOT FOUND : The storage area accessed throughcapdoes not exist on the associated IBP server.

� IBP CAP ACCESS DENIED : The storage area accessed throughcapcannot be accessed for write operations.

� IBP SIZE EXCEEDS LIMIT : The write operation would cause the aggregate size of the storage area to exceed the
maximum size specified in theIBP store()call. This error is only relevant for storage areas of typeIBP BYTEARRAY.

� IBPE FILE ACCESS : The IBP server has encountered an error while trying to access one or more of its internal
files that control access to the storage area.

� IBPE FILE WRITE : The IBP server has encountered an error while attempting to store incoming data to the
underlying storage area.

� IBP RSRC UNAVAIL : A resource used by the IBP server was unavailable to service the request. This error is only
relevant when the underlying storage area has typeIBP FIFO.

� IBPE INTERNAL : The IBP server has encountered an internal error while processing the client’s request.



4 IBP load
variable name variable type

parameters source IBP cap
timeout IBP timer

buf char *
size ulong t

offset ulong t
return value ulong t
IBP load() reads up tosizebytes, starting atoffset, from the storage area accessed through the IBP capabilitycap, into

the memory area pointed bybuf. For storage areas of typeIBP FIFO andIBP CIRQ, offset is ignored. Asizevalue of-1
causes all currently stored data in anIBP BYTEARRAYtype storage area to be read. For storage areas of typeIBP FIFO,
a sizevalue of-1 causes a read operation for all current contents of the storage area. For this call to succeed,cap must
be areadcapreturned by an earlier call toIBP allocate(), or imported from the client which made theIBP allocate()call.
IBP load() is a blocking call that returns only when all required data is read, theServerSyncexpires, or the read operation
is prematurely terminated due to an error.

Return values
Upon success,IBP load() returns the number of bytes actually read, otherwise it returns0and setsIBP errno to one of

the following error codes:

� IBP INVALID PARAMETER : One or more of the parameters to the IBPload() call has an invalid value (e.g.
negativesize, ...)

� IBP WRONG CAP FORMAT : The IBP capabilitycapdoesn’t have the proper format.

� IBP CAP NOT READ : The IBP capabilitycap is not a read capability.

� IBPE CONNECTION : An error has occurred while trying to connect to the IBP server running ontargetHost.

� IBPE SOCK WRITE : An error has occurred while trying to write to the socket connection to the IBP server.

� IBPE SOCK READ : An error has occurred while trying to read response from the IBP server.

� IBP BAD FORMAT : Response from the IBP server does not have the expected format, or the IBP server received
a badly formatted request.

� IBP INVALID CMD : The IBP server has received a command it does not recognize.

� IBP CAP NOT FOUND : The storage area accessed throughcapdoes not exist on the associated IBP server.

� IBP CAP ACCESS DENIED : The storage area accessed throughcapcannot be accessed for write operations.

� IBPE FILE ACCESS : The IBP server has encountered an error while trying to access one or more of its internal
files that control access to the storage area.

� IBPE FILE READ : The IBP server has encountered an error while attempting to read incoming data to the under-
lying storage area.

� IBP RSRC UNAVAIL : A resource used by the IBP server was unavailable to service the request. This error is only
relevant when the underlying storage area has typeIBP FIFO.

� IBPE INTERNAL : The IBP server has encountered an internal error while processing the client’s request.



5 IBP copy

variable name variable type
parameters source IBP cap

target IBP cap
timeout IBP timer

size ulong t
offset ulong t

return value ulong t
IBP copy() copies up tosizebytes, starting atoffset, from the storage area accessed through the IBP read capability

source, and writes them to the storage area accessed through the IBP write capabilitytarget. For storage areas of type
IBP FIFO andIBP CIRQ, offset is ignored. Asizevalue of-1 causes all currently stored data in anIBP BYTEARRAYtype
storage area to be copied. For storage areas of typeIBP FIFO andIBP CIRQ, a sizevalue of-1 causes a copy operation
for all current contents of the storage area. As in other read operation to anIBP FIFO or IBP CIRQ storage area, data
read from the storage area will no longer be available for future reads. For this call to succeed,sourcemust be areadcap
returned by an earlier call toIBP allocate(), or imported from the client which made theIBP allocate()call, andtarget
must be awritecapreturned by a similar call.

IBP load() is a blocking call that returns only when all required data is read, theServerSyncexpires, or the read
operation is prematurely terminated due to an error.

Return values
Upon success,IBP copy() returns the number of bytes actually read, otherwise it returns0and setsIBP errno to one of

the following error codes:

� IBP INVALID PARAMETER : One or more of the parameters to the IBPcopy() call has an invalid value (e.g.
negativesize, ...)

� IBP WRONG CAP FORMAT : The IBP capabilitycapdoesn’t have the proper format.

� IBP CAP NOT WRITE : The IBP capabilitysourceis not a write capability.

� IBP CAP NOT READ : The IBP capabilitytarget is not a read capability.

� IBPE CONNECTION : An error has occurred while trying to connect to the IBP server running ontargetHost.

� IBPE SOCK WRITE : An error has occurred while trying to write to the socket connection to the IBP server.

� IBPE SOCK READ : An error has occurred while trying to read response from the IBP server.

� IBP BAD FORMAT : Response from the IBP server does not have the expected format, or the IBP server received
a badly formatted request.

� IBP INVALID CMD : The IBP server has received a command it does not recognize.

� IBP CAP NOT FOUND : One (or both) storage area accessed throughcap does not exist on the associated IBP
server.

� IBP CAP ACCESS DENIED : One (or both) storage area accessed throughcapcannot be accessed for write oper-
ations.

� IBP SIZE EXCEEDS LIMIT : The write part of the copy operation would cause the aggregate size of the storage
area to exceed the maximum size specified in theIBP store()call. This error is only relevant for storage areas of type
IBP BYTEARRAY.

� IBPE FILE ACCESS : The IBP server has encountered an error while trying to access one or more of its internal
files that control access to the storage area.

� IBPE FILE WRITE : The IBP server has encountered an error while attempting to store incoming data to the
underlying storage area.



� IBPE FILE READ : The IBP server has encountered an error while attempting to read incoming data to the under-
lying storage area.

� IBP RSRC UNAVAIL : A resource used by the IBP server was unavailable to service the request. This error is only
relevant when the underlying storage area has typeIBP FIFO.

� IBPE INTERNAL : The IBP server has encountered an internal error while processing the client’s request.

6 IBP mcopy

variable name variable type
parameters DM op dtmv op

DM param dtmv params *
CapCount int
SourceCap IBP cap
TargetCap[] IBP cap[]

timeout IBP timer[]
size ulong t

offset ulong t
return value void *
IBP mcopy() copies up tosizebytes, starting atoffset, from the storage area accessed through the IBP read capability

source, and writes them to the storage area(s) accessed through the IBP write capability(ies)target[] . The number of target
depots is stored inCapCount. At the moment, only the point-to-point copy is implemented, so the first two parameters must
be NULL and the third one must have value1. For storage areas of typeIBP FIFO andIBP CIRQ, offset is ignored. Asize
value of-1 causes all currently stored data in anIBP BYTEARRAYtype storage area accessed throughsourceto be copied.
For source storage areas of typeIBP FIFO andIBP CIRQ, asizevalue of-1 causes a copy operation for the maximum size
specified inIBP allocate()to be initiated. As in other read operations to an IBPFIFO or IBPCIRQ type storage area, data
read from the storage area will no longer be available for future reads. For this call to succeed,sourcemust be areadcap
returned by an earlier call toIBP allocate(), or imported from the client which made theIBP allocate()call andtarget
must be awritecapreturned by a similar call.

It is worth mentioning that this call needs (1 +CapCount) IBP timers, the first one for the source, the other ones for the
each target.IBP mcopy() is a blocking call that returns only when all required data is successfully copied from the source
IBP server to all the target IBP server, the highest ServerSync value expired or the operation is prematurely terminated due
to an error.

Return values
As this call is heavily dependent on the DataMover operation selected, the return value depends from the particular

operation selected.

7 IBP manage

variable name variable type
parameters manCap IBP cap

timeout IBP timer
cmd int

capType int
info IBP CapStatus

return value int
IBP manage()allows an IBP client to perform certain management operations on an IBP storage area. Any client

that can present the management capability can issue any of the management commands described below.cap is an IBP
management capability that is returned in theIBP allocate()call or imported from the client which made that call (except
whencmd = IBP PROBE, where any capability can be used).cmd can take one of the following values (defined in the file
”ibp protocol.h”



� IBP INCR increments the reference count to the capability associated with the management capabilitycap, and
whose type is specified in the parametercapType. The parameterinfo is ignored for this command.

� IBP DECR decrements the reference count to the capability associated with the management capabilitycap and
whose type is specified in the parametercapType. Decrementing the reference count the read capability associated
with a storage area to0 causes the IBP server to delete that storage area from its managed pool. Further requests to
that area will fail, while requests currently in progress will be allowed to progress to completion.

The parameterinfo is ignored for this command.

� IBP CHNGchanges one or more of the attributes of the storage area accessed through the management capability
cap. The new values are specified through the parameterinfo (described below). The current version of IBP allows
changes to one (or more) of the following attributes:

– maxSizechanges the maximum storage size of the underlying storage area. Changing the size of a storage area
of type IBP FIFO or IBP CIRQ is currently not allowed. Decreasing maximum size of a storage area of type
IBP BYTEARRAYdoes not affect data already stored there, it will only affect future requests to that storage area.

– durationchanges the duration property of the storage area (see description of theIBP allocate()call for further
details on the possible values and implications for this parameter.)

� IBP PROBEchecks the current state of the storage area accessed through the management capabilitycap. The
current state is returned through the parameterinfo, which is defined below.

capTypedetermines the type of the capability affected by the two commandsIBP INCRandIBP DECR. It can have one
of two values,IBP READCAPandIBP WRITECAP. It is ignored for the two commandsIBP CHNGandIBP PROBE.

info is a pointer to a structure of typeIBP CapStatus.
The following table summarizes the use of different parameters with every command.

capType readRefCount writeRefCount currentSize maxSize attrib
IBP INCR In Not used Not Used Not Used Not Used Not Used
IBP DECR In Not used Not Used Not Used Not Used Not Used
IBP PROBE Not Used Out Out Out Out Out
IBP CHNG Not Used Not Used Not Used Not Used In In

Return values
Upon success,IBP manage()returns0, otherwise it returns-1 and setsIBP errno to one of the following error codes:

� IBP INVALID PARAMETER : One or more of the parameters to the IBPmanage() call has an invalid value (e.g.
negativecapType, ...)

� IBP WRONG CAP FORMAT : The IBP capability doesn’t have the proper format.

� IBP CAP NOT MANAGE : The IBP capability is not a write capability.

� IBPE CONNECTION : An error has occurred while trying to connect to the IBP server.

� IBPE SOCK WRITE : An error has occurred while trying to write to the socket connection to the IBP server.

� IBPE SOCK READ : An error has occurred while trying to read response from the IBP server.

� IBP BAD FORMAT : Response from the IBP server does not have the expected format, or the IBP server received
a badly formatted request.

� IBP INVALID CMD : The IBP server has received a command it does not recognize.

� IBP CAP NOT FOUND : The storage area accessed throughcapdoes not exist on the associated IBP server.

� IBP INVALID MANAGE CAP : The management cap does not match the management cap associated with the
storage area.



� IBP WOULD DAMAGE DATA : Trying to change the size of a storage area of typeIBP FIFO.

� IBP WOULD EXCEED LIMIT : Trying to increase the maximum size of anIBP BYTEARRAYtype storage area
leads exceeding the maximum storage space allocated for its class of storage.

� IBPE INTERNAL : The IBP server has encountered an internal error while processing the client’s request.

8 IBP status
variable name variable type

parameters depot IBP depot
StatusCmd int

timeout IBP timer
Password char *
StableStor ulong t

VolStor ulong t
Duration long

return value IBP DptStatus
IBP status()allows an application to perform a query over a particular IBP depot and to modify some general storage

properties.depot is the particular IBP depot the application would like to query.StatusCmdcan have two values

� IBP ST INQ queries the IBP depot for its stable storage and the used amount, its volatile storage and the used
amount, and the duration. When this command is used, the following 4 parameters are not used.

� IBP ST CHANGE changes the stable amount, the volatile amount and duration property of the IBP depot. Note the
difference between this command and theIBP manage()one. It is not possible to destroy the data already present in
an IBP depot, so the changes only take effect if they are equal or bigger than the currently allocated area.

passwordis the IBP depot password.StableStoris the new total Stable Storage of the IBP depot. It must be equal or bigger
than the current Stable Storage used; otherwise, it’s ignored.VolStor is the new total Volatile Storage of the IBP depot.
It must be equal or bigger than the current Volatile Storage used; otherwise, it’s ignored.duration is the new maximum
duration allowed. It is not retro-active.


