
Recursive approach in sparse matrix LU factorization
Jack Dongarra1, Victor Eijkhout1, Piotr Luszczek1

Abstract

This paper describes the recursive LU factorization of sparse matrices. The recursive formulation of

common linear algebra codes has been proven very successful in dense matrix computations. We present

an extension of this idea to sparse matrices. Our experiments show that the recursive approach can be

very competitive with leading tools for sparse matrix factorization in terms of time, required storage

space, and error estimation.

1 Introduction

One of the most commonly used linear algebra computational kernels is the LU factorization of a matrix.
Given square real matrix A (A 2 R

n�n) the goal of the factorization is to �nd matrices L, U , P and Q such
that:

LU = PAQ; (1)

where:

� L is lower triangular matrix with unitary diagonal,

� U is upper triangular matrix,

� P , Q are row and column permutation matrices, respectively, for which the following holds: PP T =
QQT = I with I being identity matrix.

After the factorization, the following linear system of equations:

Ax = b; (2)

can be solved with:
x = QU�1L�1Pb; (3)

where x; b 2 R
n are vectors.

However, matrix inverse operations in (3) do not have to be performed explicitly since L and U are triangular
matrices. Thus, the solve operation becomes very fast which in turn renders the iterative improvement method
feasible.

When both of the matrices P and Q of (1) are non-trivial then factorization is said to be using complete
pivoting. In practice, however, Q is an identity matrix and this strategy is called partial pivoting which tends
to be suÆcient to retain numerical stability of the factorization unless matrix A of (2) is too close to being
singular.

When matrix A is sparse, i.e. most of its entries are zero, it is of great importance to con�ne the factorization
process to nonzero entries of the matrix. This creates additional problem of �ll-in and to deal with this, usually
both of the matrices: P and Q of (1) are non-trivial.

Typical linear algebra package such as LAPACK [2] which includes factorization performs it iteratively
with blocking technique applied to enhance the performance of the computer implementation. Surprisingly,
recursive approach was proven to outperform its loop-oriented counterpart [13]. For sparse matrices this
approach cannot be applied directly because the sparsity pattern of a matrix has to be taken into account
in order to reduce both storage requirements and
oating point operation count which are the determining
factors of the performance of sparse code.

1

function xGETRF(matrix A � [aij]; i; j = 1; : : : ; n)
begin

for i = 2; n
begin

aij := 1
ajj

(aij �
j�1P
k=1

aikakj); j = 1; i� 1

aij := (aij �
j�1P
k=1

aikakj); j = i; n

end
end

Figure 1: The recursive LU factorization function of a dense matrix A equivalent to LAPACK's xGETRF()

function performed using Gaussian elimination (without pivoting code).

2 Dense Recursive LU factorization

Figure 1 shows classical LU factorization code which uses Gaussian elimination. Rearrangement of the loops
and introduction of blocking techniques can signi�cantly increase performance of this code [2]. However, the
recursive formulation of this algorithm shown in Figure 2 exhibits superior performance [13].

Figure 2 shows recursive algorithm of the LU factorization with pivoting code. Most notably, it does not
contain any loop constructs. Also, most of the
oating point operations are performed by calls to Level 3
BLAS [6] routines: xTRSM() and xGEMM(). They achieve the highest MFLOP/s rates on modern computer
architectures with deep memory hierarchy as they come in the vendor-optimized libraries or are tuned for a
given machine in some other way [8].

Yet another variation of recursive algorithm is shown in Figure 3 with pivoting omitted. Experiments show
that this code performs equally well as the code from Figure 2. It is still possible to improve performance
even further when the matrix is stored recursively. Such a storage scheme is illustrated in Figure 4. The
scheme recursively aligns dense submatrices in memory. Recursive algorithm from Figure 3 recurses down to
the level of a single submatrix and calls appropriate computational routine (either BLAS or xGETRF()) which
works within boundaries of a single submatrix. Depending on the size of submatrices, it is possible to achieve
execution rates higher than when matrix is stored by columns. In
uenced by this result, we use code from
Figure 3 as a base for our sparse algorithm.

3 Sparse Matrix Factorization

Matrices originating from the Finite Element Method [17], or most other discretizations of Partial Di�erential
Equations, have most of their entries equal to zero. During factorization of such matrices it pays o� to take
advantage of the sparsity pattern in order to signi�cantly reduce the number of
oating point operations and
running time. There is a major problem connected with it which is �ll-in, i.e. new nonzero entries that are
introduced in L, U factors which are not present in original matrix A of (1). It turns out that proper ordering
of a matrix (matrices P and Q) can reduce amount of �ll-in, however, search for the optimal ordering is
NP-complete problem. Thus, many heuristics has been devised, ranging from divide and conquer approaches
such as Nested Dissection [10, 15] to greedy schemes such as Minimum Degree [1, 18]. For certain types of
matrices bandwidth and pro�le reducing orderings such as Reverse Cuthill-McKee [4, 11] and Sloan [16] may
perform well.

Once the amount of �ll-in is minimized through the appropriate ordering, it is still desirable to use optimized
BLAS. This poses additional problems since sparse matrix data is usually stored in a form which is not suitable
for the BLAS. The two major approaches that cope with this are multifrontal and supernodal. We compare
our recursive code only with SuperLU [14] which is a supernodal code, because until recently, multifrontal
packages were suited only for certain class of matrices.

2

function xGETRF(matrix A)
begin

if (A 2 R
n�1) If matrix has just one column.

begin
jak1j := max

1�i�n
jai1j Find pivot.

a11 :=: ak1 Exchange a11 with ak1.

A := 1
a11

� A Scale the matrix { equivalent to Level 1 BLAS xSCAL().

end

Divide matrix A into four submatrices.

A =

"
A11 A12

A21 A22

#
2 R

m�n

A11 2 R
m1�n1, A21 2 R

m2�n1, A12 2 R
m1�n2 , A22 2 R

m2�n2

m1 := bm=2c; n1 := bn=2c;
m2 := m� bm=2c; n2 := n� bn=2c;

xGETRF(
h
A11

A21

i
); Recursive call.

xLASWP(
h
A12

A22

i
); Apply pivoting from the recursive call.

Lower triangular solve which is equivalent to

Level 3 BLAS xTRSM() function.

Find X12 such that: L11 �X12 = A12

where:
L11 2 R

m1�n1 is lower triangular matrix of A11

with unitary diagonal
A12 := X12;

Compute the Shur's complement which is

equivalent to a matrix-matrix multiply performed

by Level 3 BLAS xGEMM() function.

A22 := A22 � A21 � A12;

xGETRF(A22); Recursive call.

end.

Figure 2: The recursive LU factorization function of a dense matrix A equivalent to LAPACK's xGETRF()

function with pivoting code.

3

function xGETRF(matrix A)
begin

if (A 2 R
1�1) return; Do nothing for 1x1 matrices.

Divide matrix A into four submatrices.

A =

"
A11 A12

A21 A22

#
2 R

n�n

A11 2 R
n1�n1 , A21 2 R

n2�n1, A12 2 R
n1�n2 , A22 2 R

n2�n2

n1 := bn=2c;
n2 := n� bn=2c;

xGETRF(A11); Recursive call.

Upper triangular solve which is equivalent to

Level 3 BLAS xTRSM() function.

Find X21 such that: X21 � U11 = A21

where:
U11 2 R

n1�n1 is upper triangular matrix of A11

(including diagonal)
A21 := X21;

Lower triangular solve which is equivalent to

Level 3 BLAS xTRSM() function.

Find X12 such that: L11 �X12 = A12

where:
L11 2 R

n1�n1 is lower triangular matrix of A11

with unitary diagonal
A12 := X12;

Compute the Shur's complement which is

equivalent to a matrix-matrix multiply performed

by Level 3 BLAS xGEMM() function.

A22 := A22 � A21 � A12;

xGETRF(A22); Recursive call.

end.

Figure 3: The recursive LU factorization function used for sparse matrices equivalent to LAPACK's xGETRF()
function with pivoting code omitted.

4

Column-major storage scheme:
1 8 15 22 29 36 43
2 9 16 23 30 37 44
3 10 17 24 31 38 45
4 11 18 25 32 39 46
5 12 19 26 33 40 47
6 13 20 27 34 41 48
7 14 21 28 35 42 49

Recursive storage scheme:
1 4 5 22 23 28 29
2 6 8 24 26 30 32
3 7 9 25 27 31 33

10 14 16 34 36 42 44
11 15 17 35 37 43 45
12 18 20 38 40 46 48
13 19 21 39 41 47 49

function convert(matrix A)
begin

if (A 2 R
1�1)

Copy current element of A;
Go to the next element of A;

else
begin

A =

"
A11 A12

A21 A22

#
;

convert(A11);
convert(A21);
convert(A12);
convert(A22);

end
end.

Figure 4: Column-major storage scheme versus recursive storage (left) and function for converting square
matrix from column-major to recursive storage (right.)

Factorization algorithms for sparse matrices typically include the following phases:

� matrix ordering that reduces �ll-in,

� symbolic factorization,

� search for so called supernodes,

� numerical factorization.

The �rst phase is aimed at reducing the aforementioned amount of �ll-in and sometimes at improving
numerical stability of the factorization (it is referred to as static pivoting). In our code, this phase serves
both of these purposes, whereas in SuperLU pivoting is performed during the factorization. The actual
pivoting strategy is called threshold pivoting, i.e. the pivot that is being chosen is not necessarily the largest
in absolute value in a current column (which is the case in a dense codes) but instead it has to satisfy less
rigid requirements. This makes the pivoting much more eÆcient considering complexity of data structures
involved in a sparse factorization.

The next stage �nds the �ll-in and allocates storage space for them. This process can be performed
solely based on the matrix structure information without taking matrix values into consideration. Substantial
performance improvements are obtained in this phase if graph-theoretic concepts such as elimination trees
and elimination dags [12] are eÆciently utilized.

Then, supernodes are found which are sets of columns that have a similar sparsity structure. They are
used in the next stage: the numerical factorization. Supernodes enable the use of BLAS routines to improve
the performance of the last phase. In case of SuperLU, the structure of supernodes allows only calls to Level 2
BLAS routines which have a performance limited by the CPU-memory bandwidth. To alleviate this problem,
SuperLU reorganizes calls to BLAS routines to gain extra reuse of data already present in cache (this technique
is referred to as the use of Level 2.5 BLAS [14]).

5

� ? � ?
? � ? �

� ? � ?
? � � ?

? � ?
 � �
 ? ? �
� ?
 ? ? �
 ? ? �

� ? ? �
� � �

� ?
 ? � ? ?

? �
 ? ? � ?

� ?
? �

� ?
 ? � � ? ?
� �
 ? � � � ?

? � � �
? ? � �

� { original nonzero value
0 { zero value introduced due to blocking
x { zero value introduced due to �ll-in

Figure 5: Sparse recursive blocked storage scheme with blocking factor equal two.

4 Sparse Recursive Factorization Algorithm

In order to implement eÆcient factorization code we took into account all the issues mentioned above and
developed a storage scheme with the following characteristics:

� the data structure that describes the sparsity pattern is recursive,

� the storage scheme for numerical values has two levels:

{ lower level that consists of dense square submatrices (blocks) which enable direct use of Level 3
BLAS,

{ upper level which is a set of are the integer indices describing sparsity pattern of blocks.

Figure 5 illustrates the sparse blocked recursive storage scheme that we use. There are two important
rami�cations of this scheme. First, the number of integer indices that describe the sparsity pattern is decreased
because each of these indices refers to a block of values rather than individual values. Second, blocking
introduces additional nonzero elements which would not be present otherwise. The former implies more
compact data structures, and during factorization translates into shorter execution time because there is less
sparsity pattern data to traverse and more
oating operations are performed within eÆcient BLAS codes.

The additional zero values that arise from blocking lead to an increase in storage requirements, which
not only increases memory demands, but also execution time since
oating operations are performed on zero
values. This leads to the conclusion that the sparse recursive storage scheme will perform best when dense
blocks exist in the L and U factors of a matrix. Such a structure may be achieved using band reducing
orderings such as Reverse Cuthill-McKee [4] or Sloan [16]. These orderings incur more �ll-in than others
such as Minimum Degree [1, 18] or Nested Dissection [10, 15] but this e�ect is alleviated by aforementioned
compactness of the data storage and utilization of Level 3 BLAS.

The algorithm from Figure 3 remains almost unchanged in the sparse case { the only di�erence are the
calls to BLAS which are replaced by the calls to their sparse recursive counterparts and the data structure is

6

C := C � A �B
A,B,C are arbitrary rectangular matrices
function xGEMM('N','N',� = �1,A,B, � = 1,C)
begin

A =

"
A11 A12

A21 A22

#
; B =

"
B11 B12

B21 B22

#
; C =

"
C11 C12

C21 C22

#
;

C11 := C11 � A11 �B11

xGEMM('N','N',� = �1,A11,B11, � = 1,C11);

C21 := C21 � A21 �B11

xGEMM('N','N',� = �1,A21,B11, � = 1,C21);

C11 := C11 � A12 �B21

xGEMM('N','N',� = �1,A12,B21, � = 1,C11);

C21 := C21 � A22 �B21

xGEMM('N','N',� = �1,A22,B21, � = 1,C21);

C12 := C12 � A11 �B12

xGEMM('N','N',� = �1,A11,B12, � = 1,C12);

C12 := C12 � A12 �B22

xGEMM('N','N',� = �1,A12,B22, � = 1,C12);

C22 := C22 � A21 �B12

xGEMM('N','N',� = �1,A21,B12, � = 1,C22);

C22 := C22 � A22 �B22

xGEMM('N','N',� = �1,A22,B22, � = 1,C22);

end.

Figure 6: Recursive formulation of xGEMM() function used in sparse recursive factorization.

no longer the same. Figures 6 and 7 show the recursive BLAS routines used by the factorization algorithm.
They traverse the sparsity pattern and upon reaching single dense block level they call dense BLAS which
perform actual
oating point operations.

5 Performance Results

We have performed our experiments on an Pentium III workstation running Linux operating system. Ta-
ble 1 summarizes characteristics of a machine used in tests. Table 2 shows timing results and error estimates
for SuperLU Version 2.0 (available at http://www.nersc.gov/~xiaoye/SuperLU/) and for the recursive ap-
proach, operating on selected matrices from the Harwell-Boeing collection [9], and Tim Davis' [5] matrix
collection, which were used in [14] to evaluate the performance of SuperLU. Performance of the sparse factor-
ization code heavily depends on the initial ordering of the matrix. Thus, we have selected the best time we
could obtain using all the available ordering schemes that come with SuperLU. For the recursive approach all
of the matrices were ordered using Reverse Cuthill-McKee ordering [4, 11]. For the recursive approach it is
possible to select di�erent block sizes, which yields slightly di�erent times. We then show the best running
time out of block sizes ranging between 40 and 120. The computed forward and backward errors are similar
for both codes despite the fact that two di�erent approaches to pivoting are used. SuperLU uses threshold
pivoting while in the recursive code there is no pivoting but instead the iterative improvement method is used.

Table 3 shows matrix parameters and storage requirements. It can be seen that SuperLU uses slightly
less memory and consequently performs much fewer
oating point operations. This may be attributed to the
minimum degree ordering algorithm used by SuperLU which minimizes the �ll-in and thus the space required
to store factored matrix. The large di�erence between operation counts is not evident from the memory
requirements because the recursive storage scheme is very compact. It comes from the fact that the recursive

7

B := B � U�1

U is upper triangular matrix
with non-unitary diagonal

function xTRSM('R','U','N','N',U,B)

begin

B =

"
B11 B12

B21 B22

#
; U =

"
U11 U12

0 U22

#
;

B11 := B11 � U
�1
11

xTRSM('R','U','N','N',U11,B11);

B21 := B21 � U
�1
11

xTRSM('R','U','N','N',U11,B21);

B22 := B22 � B21 � U12

xGEMM('N','N',� = �1,B21,U12, � = 1,B22);

B22 := B22 � U
�1
22

xTRSM('R','U','N','N',U22,B22);

B12 := B12 � B11 � U12

xGEMM('N','N',� = �1,B11,U12, � = 1,B12);

B12 := B12 � U
�1
22

xTRSM('R','U','N','N',U22,B12);

end.

B := L�1 �B
L is lower triangular matrix

with unitary diagonal
function xTRSM('L','L','N','U',L,B)

begin

B =

"
B11 B12

B21 B22

#
; L =

"
L11 0
L21 L22

#
;

B11 := L�111 �B11;
xTRSM('L','L','N','U',L11,B11);

B21 := B21 � L21 �B11;
xGEMM('N','N',� = �1,L21,B11, � = 1,B21);

B21 := L�122 �B21;
xTRSM('L','L','N','U',L22,B21);

B12 := L�111 �B12;
xTRSM('L','L','N','U',L11,B12);

B22 := B22 � L12 �B12;
xGEMM('N','N',� = �1,L12,B12, � = 1,B22);

B22 := L�122 �B22;
xTRSM('L','L','N','U',L22,B22);

end.

Figure 7: Recursive formulation of xTRSM() functions used in sparse recursive factorization.

8

Hardware speci�cations
Machine type Dual Pentium III
Clock rate 550 MHz
Bus clock rate 100 MHz
CPU(s) 2 x Pentium III
L1 data cache 16 Kbytes
L1 instruction cache 16 Kbytes
L2 uni�ed cache 512 Kbytes
Main memory 512 MBytes

Performance of single CPU
Peak 550 MFLOP/s
Matrix-matrix multiply 390 MFLOP/s
Matrix-vector multiply 100 MFLOP/s

Table 1: Parameters of the machine used in the tests.

Matrix SuperLU Recursive approach
name time [s] FERR BERR time [s] FERR BERR

af23560 44.19 5.8e-14 1.3e-03 31.34 1.8e-14 1.1e-04
ex11 109.67 2.5e-05 8.1e-04 55.3 1.3e-06 1.3e-04
goodwin 6.49 1.2e-08 2.7e-04 6.74 4.6e-06 1.2e+01
jpwh 991 0.19 2.9e-15 2.7e-03 0.25 2.6e-15 1.3e-03
mcfe 0.07 1.2e-13 6.2e-04 0.22 9.1e-13 4.8e-04
memplus 0.29 2.1e-12 2.4e-04 12.67 6.6e-13 4.0e-05
olafu 26.16 1.1e-06 2.4e-05 22.1 3.7e-09 1.2e-05
orsreg 1 0.46 1.3e-13 2.5e-03 0.45 2.1e-13 8.7e-04
psmigr 1 110.79 7.9e-11 4.3e-03 88.61 1.2e-05 5.6e+01
raefsky3 62.07 1.4e-09 9.8e-04 69.67 4.4e-13 2.1e-04
raefsky4 82.45 2.3e-06 3.0e-04 104.29 3.5e-06 4.5e-05
saylr4 0.85 3.2e-11 8.3e-04 0.95 1.2e-11 5.6e-04
sherman3 0.61 6.0e-13 1.3e-04 0.67 4.8e-13 6.1e-05
sherman5 0.28 1.4e-13 1.2e-04 0.32 6.2e-15 1.7e-04
wang3 84.14 2.4e-14 3.9e-04 79.18 1.6e-14 1.8e-04

forward error: FERR = kx̂�xk1
kxk1

backward error: BERR = kAx̂�bk1
(kAk1kx̂k1+kbk1)�"�n

Table 2: Factorization time and error estimation for the test matrices.

9

Matrix parameters SuperLU Recursive approach
Name N nonzeros L+U L+U block

[MBytes] [MBytes] size

af23560 23560 460598 132.2 149.7 120
ex11 16614 1096948 210.2 150.6 80
goodwin 7320 324772 31.3 35.0 40
jpwh 991 991 6027 1.4 2.3 40
mcfe 765 24382 0.9 1.8 40
memplus 17758 126150 5.9 195.7 60
olafu 16146 1015156 83.9 96.1 80
orsreg 1 2205 14133 3.6 3.9 40
psmigr 1 3140 543162 64.6 78.4 100
raefsky3 21200 1488768 147.2 193.9 120
raefsky4 19779 1316789 156.2 234.4 80
saylr4 3564 22316 6.0 7.2 40
sherman3 5005 20033 5.0 7.3 60
sherman5 3312 20793 3.0 3.1 40
wang3 26064 177168 116.7 256.7 120

Table 3: Parameters of the test matrices and their storage requirements for SuperLU and recursive approach.

approach stores many more
oating point values (most of which are zeros). However, it becomes noticeable
in the
oating point operation count which is proportional to the third power of the number of
oating point
values. Nevertheless, the performance in terms of time to solution of the recursive code is still very competitive
with SuperLU due to the use of Level 3 BLAS.

6 Conclusions and Future Work

We have shown that a recursive approach to sparse matrix factorization may lead to a very eÆcient implemen-
tation which is competitive with the best supernodal codes in terms of execution time, storage requirements,
and error estimation of the solution. However, there are still matrices for which our code does not perform
well. We plan to investigate further these cases and devise matrix metrics which would allow us to select the
best factorization method for a given matrix [3].

7 Acknowledgments

This work was supported in part by the University of California Berkeley through subcontract number
SA2283JB, as part of the prime contract ACI-9813362 from the National Science Foundation; and by the
University of California Berkeley through subcontract number SA1248PG, as part of the prime contract
DEFG03-94ER25219 from the Department of Energy.

References

[1] R. Amestoy, T. Davis and I. Du�, An approximate minimum degree algorithm, Technical Report
TR/PA/95/09, CERFACS, Toulouse, France.

10

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User's Guide, Society for Industrial and
Applied Mathematics, Philadelphia, PA, third edition, 1999.

[3] R. Barrett, M. Berry, J. Dongarra, V. Eijkhout and C. Romine, Algorithmic bombardment for the iterative
solution of linear systems: a poly-iterative approach, JCAM, 74, pp. 91-109, 1996.

[4] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, in Proceedings of ACM
National Conference, Association of Computing Machinery, New York, 1969.

[5] T. Davis, University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/~davis/sparse/,
ftp://ftp.cise.ufl.edu/pub/ faculty/davis/matrices, NA Digest, 92(42), October 16, 1994, NA
Digest, 96(28), July 23, 1996, and NA Digest, textbf97(23), June 7, 1997.

[6] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling, A Set of Level 3 FORTRAN Basic Linear Algebra
Subprograms, ACM Transactions on Mathematical Software, 16, pp. 1-17, March 1990.

[7] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, An Extended Set of FORTRAN Basic Linear
Algebra Subprograms, ACM Transactions on Mathematical Software, 14, pp. 1-17, March 1988.

[8] J. Dongarra, and R. Whaley, Automatically Tuned Linear Algebra Software (ATLAS), in Proceedings of
SC'89, 1989.

[9] I. Du�, R. Grimes and J. Lewis, Sparse matrix test problems, ACM Transactions on Mathematical
Software, 15, pp. 1-14, 1989.

[10] A. George, Nested dissection of a regular �nite element mesh, SIAM Journal of Numerical Analysis, 10,
pp. 345-363, 1973.

[11] N. E. Gibbs, W. G. Poole, and P. K. Stockmeyer, An Algorithm for Reducing the Bandwidth and Pro�le
of a Sparse Matrix, SIAM Journal of Numerical Analysis, 13(2), April, 1976.

[12] John R. Gilbert, and Joseph W. H. Liu, Elimination structures for unsymmetric sparse LU factors, SIAM
J. Matrix Anal. Appl. 14(2), pp. 334-352, April, 1993.

[13] F. Gustavson, Recursion Leads to Automatic Variable Blocking for Dense Linear-Algebra Algorithms,
IBM Journal of Research and Development, Volume 41, Number 6, November 1997.

[14] X. Li, Sparse Gaussian Elimination on High Performance Computers, PhD thesis, University of California
at Berkeley, Computer Science Department, 1996.

[15] R. J. Lipton, D. J. Rose, and R. E. Tarjan, Generalized Nested Dissection, SIAM Journal on Numerical
Analysis, 16, pp. 346-358, 1979.

[16] S. W. Sloan, An algorithm for pro�le and wavefront reduction of sparse matrices, International journal
for numerical methods in engineering, 23, pp. 239-251, 1986.

[17] G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Inc., 1973.

[18] W. Tinney and J. Walker, Direct solutions of sparse network equations by optimally ordered triangular
factorization, in Proceedings of the IEEE, 55, pp. 1801-1809, 1967.

11

