
Integrating Deep Learning in Domain Science at Exascale
(MagmaDNN)	

Stan Tomov
Research Assistant Professor

University of Tennessee

Rick Archibald, Eduardo D’Azevedo, Markus Eisenbach, and Junqi Yin
Oak Ridge National Laboratory

Edmond Chow, Georgia Institute of Technology

Jack Dongarra, Rocco Febbo, Florent Lopez, Daniel Nichols, and Kwai Wong

University of Tennessee, Knoxville

DOD HPCMP virtual seminar
December 8, 2020

Needed in a wide variety of domain sciences
Can power ML and data analytics too:

•  Linear systems: Solve Ax = b
•  Computational electromagnetics, material science, applications using

boundary integral equations, airflow past wings, fluid flow around ship
and other offshore constructions, and many more

•  Least squares: Find x to minimize || Ax – b ||
•  Computational statistics (e.g., linear least squares or ordinary least squares),

econometrics, control theory, signal processing, curve fitting, and many more

•  Eigenproblems: Solve Ax = λ x
•  Computational chemistry, quantum mechanics, material science, face recognition,

PCA, data-mining, marketing, Google Page Rank, spectral clustering, vibrational
analysis, compression, and many more

•  SVD: A = U Σ V* (Au = σv and A*v = σu)
•  Information retrieval, web search, signal processing, big data analytics, low rank

matrix approximation, total least squares minimization, pseudo-inverse, and many more

•  Many variations depending on structure of A
•  A can be symmetric, positive definite, tridiagonal, Hessenberg, banded,

sparse with dense blocks, etc.

•  DLA is crucial to the development of sparse solvers

Dense Linear Algebra

High-performance LA for modern architectures

•  Leverage latest numerical
algorithms and building blocks
MAGMA, PLASMA, SLATE (DOE funded) ,
MAGMA Sparse, POMPEI project*

•  Polymorphic approach
Use MAGMA sub-packages for various
architectures;
Provide portability through single
templated sources using C++

•  Programming model
BLAS tasking + scheduling

•  Open standards
OpenMP4 tasking + MPI

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)

(Vector operations)

Rely on

 - Level-1 BLAS

operations

LAPACK (80’s)

(Blocking, cache

friendly)

Rely on

 - Level-3 BLAS

operations

ScaLAPACK (90’s)

(Distributed Memory)

Rely on

 - PBLAS Mess Passing

PLASMA (00’s)

New Algorithms

(many-core friendly)

Rely on

 - a DAG/scheduler

 - block data layout

 - some extra kernels

����������������������
���
��������������������
����������
����
��������������
����������������������
���������
���������������������������
�����������	�����
����������
�����������������
���������	�����
���������������
�
�����
��������������
�������������
��

�
������
���������������������

 MAGMA
 Hybrid Algorithms
 (heterogeneity friendly)

Level 1 BLAS

Level 3 BLAS

PBLAS
 BLAS on tiles +
DAG scheduling

BLAS tasking +
(CPU / GPU / Xeon Phi)
hybrid scheduling

Use of BLAS for portability

Use of BLAS is in the heart of ML performance and portability too!

Nvidia P100
The theoretical peak double precision is 4700 Gflop/s
CUDA version 8.0

HPC software design – use Level 3 BLAS
Nvidia P100, 1.19 GHz, Peak DP = 4700 Gflop/s

Matrix size (N), vector size (NxN)
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

Gf
lop

/s

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

4800

dgemm BLAS Level 3
dgemv BLAS Level 2
daxpy BLAS Level 1

145 Gflop/s

52 Gflop/s

4503 Gflop/s

31x

C = C + A*B

y = y + A*x

y = �*x + y

What other LA is needed for Data Analytics?

•  Traditional libraries like MAGMA can be used as backend to accelerate the LA computations
in data analytics applications

•  Need support for
1) New data layouts, 2) Acceleration for small matrix computations, 3) Data analytics tools

Need data processing and analysis support for
Data that is multidimensional / relational

Small matrices, tensors, and batched
computations

Fixed-size
batches

Variable-size
batches

Dynamic batches

Tensors

Data Analytics and LA on many small matrices
(Batched LA)

Data Analytics and associated with it Linear Algebra on small LA
problems are needed in many applications:

•  Machine learning,
•  Data mining,
•  High-order FEM,
•  Numerical LA,
•  Graph analysis,

•  Neuroscience,
•  Astrophysics,
•  Quantum chemistry,
•  Multi-physics problems,
•  Signal processing, etc.

Filters F
Fn

 Output On

n,kO

n,kO = k,iD
i
∑ n,iF

Dk .
Convolution Pooling Convolution Pooling Fully Output

 connected predictions Data D

Convolution of Filters Fi (feature detection) and input image D:
•  For every filter Fn and every channel, the computation for

every pixel value On,k is a tensor contraction:

•  Plenty of parallelism; small operations that must be batched
•  With data “reshape” the computation can be transformed into

a batched GEMM (for efficiency; among other approaches)

chicken 0.4
boat 0.3

person 0.1
dog 0.01

Batched LAPACK
Sparse / Dense Matrix

System

Single calls to
Batched BLAS

DAG-based factorization

•  Matrix-free basis evaluation needs efficient tensor contractions,

•  Within ECP CEED Project, designed MAGMA batched methods
to split the computation in many small high-intensity GEMMs,
grouped together (batched) for efficient execution:

 Batch_{ Ci3 = AT Bi3, for range of i3 }

i1,i2,i3C = k,i1A k,i2,i3B
k
∑

Machine learning Applications using high-order FEM

Sparse/Dense solvers & preconditioners

Programming model: BLAS + scheduling
ML also construct compute graphs and schedule execution

B
LA

S
ta

sk
in

g
+

hy

br
id

 s
ch

ed
ul

in
g

MAGMA
hybrid scheduling

1
2

Execution trace with hybrid task scheduling

4 G
PU

s +
 C

PU

Time

Main Classes of Algorithms in MAGMA

•  Hybrid algorithms
•  Use both CPUs and GPUs

•  GPU-only algorithms
•  Entirely GPU code

Main Classes of Algorithms in MAGMA

•  Hybrid algorithms
•  Use both CPUs and GPUs

•  GPU-only algorithms
•  Entirely GPU code

•  Out-of-GPU memory algorithms
•  LA that is too large to fit into the main CPU/GPU memory

A. Haidar, K. Kabir, D. Fayad, S. Tomov, and J. Dongarra, “Out of Memory SVD
Solver for Big Data”, IEEE HPEC, September, 2017.

Yuechao Lu, et al. on out-of-GPU memory GEMMs in RSVD, TASMANIAN, etc.

0	

1000	

2000	

3000	

4000	

5000	

6000	

10K	
 20K	
 30K	
 40K	
 50K	
 60K	
 70K	
 80K	

magma_dgetrf	

CPU Intel Xeon E5-2650 v3 (Haswell)
2x10 cores @ 2.30 GHz V100 NVIDIA Volta GPU

80 MP x 64 @ 1.38 GHz

G
flo

p/
s

PCIe

Matrix size

Performance of LU in DP

O
ut

-o
f-G

P
U

M

em
or

y

Main Classes of Algorithms in MAGMA

•  Hybrid algorithms
•  Use both CPUs and GPUs

•  GPU-only algorithms
•  Entirely GPU code

•  Out-of-GPU memory algorithms
•  LA that is too large to fit into the main CPU/GPU memory

•  Mixed-precision LA
•  Use new hardware features, e.g., Tensor Cores

A. Haidar, P. Wu, S. Tomov, and J. Dongarra, “Investigating half precision
arithmetic to accelerate dense linear system solvers”, SC’17 ScalA17
workshop, November 2017.

A. Haidar, S. Tomov, and J. Dongarra, and N. Higham, “Harnesing GPU Tensor
Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative
Refinement Solvers”, SC’18 (accepted), November 2018.

Posters (GTC’18 2nd place, ISC’18 1st place; 11K downloads in a month)

Matrix size
2k 4k 6k 8k 10k 14k 18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

2
5
3

2
63 2

6
3

2
6
3

2
6
3 2

6
3

2

6
3

2

6

3

2

6

3

2

7

3

2

7

3

2

6

3
Performance of solving Ax=b

using FP64 or IR with GMRes to achieve FP64 accuracy
FP16-TC->64 dhgesv
FP16->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

κ
∞
(A

)

100

101

102

103

104

105

Main Classes of Algorithms in MAGMA

•  Hybrid algorithms
•  Use both CPUs and GPUs

•  GPU-only algorithms
•  Entirely GPU code

•  Out-of-GPU memory algorithms
•  LA that is too large to fit into the main CPU/GPU memory

•  Mixed-precision LA
•  Use new hardware features, e.g., Tensor Cores

•  Energy efficient
•  Build energy awareness and tradeoff with performance

GF
LO

Ps
 / W

at
t

0	

5	

10	

15	

20	

25	

CPU	
 K40	
 P100	
 V100	

10x

Energy efficiency
(under ~ the same power draw)

… and 76 Gflop/Watt
using mixed-precision !

Main Classes of Algorithms in MAGMA

•  Hybrid algorithms
•  Use both CPUs and GPUs

•  GPU-only algorithms
•  Entirely GPU code

•  Out-of-GPU memory algorithms
•  LA that is too large to fit into the main CPU/GPU memory

•  Mixed-precision LA
•  Use new hardware features, e.g., Tensor Cores

•  Energy efficient
•  Build energy awareness and tradeoff with performance

•  Batched LA
•  LA on many small matrices

Main Classes of Algorithms in MAGMA

•  Hybrid algorithms
•  Use both CPUs and GPUs

•  GPU-only algorithms
•  Entirely GPU code

•  Out-of-GPU memory algorithms
•  LA that is too large to fit into the main CPU/GPU memory

•  Mixed-precision LA
•  Use new hardware features, e.g., Tensor Cores

•  Energy efficient
•  Build energy awareness and tradeoff with performance

•  Batched LA
•  LA on many small matrices

•  FFT
•  FFTs, convolutions, auxiliary routines (transposes, matricizations, etc.)

1 2 3 4

5 6 7 8

9 10 11 12

20 21 23 24
33 34 35 36

 31 32 33 34 35 36

 1 2 3 4 5 6

1!

–!!–!–!!–!!–!–!!!
–!!–!–!!–!!–!–!!!

–!!–!–!!–!!–!–!!!
–!!–!–!!–!!–!–!!!
–!!–!–!!–!!–!–!!!

1 2 3 4

5 6 7 8

9 10 11 12

20 21 23 24
33 34 35 36

1!

 AI, ML, NN, DNN, data analytics

ü  Ar,ficial	
 Intelligence	
 (AI):	
 science	
 and	
 	
 engineering	
 of	
 making	
 intelligent	
 machines	
 to	
 perform	
 the	
 human	
 tasks	
 (John	

McCarthy,1956).	
 AI	
 applicaMons	
 is	
 ubiquitous.	
 	

ü  Machine	
 learning	
 (ML)	
 :	
 A	
 field	
 of	
 study	
 that	
 gives	
 computers	
 the	
 ability	
 to	
 learn	
 without	
 being	
 explicitly	
 programmed	

(Arthur	
 Samuel,	
 1959).	
 	
 A	
 computer	
 program	
 is	
 said	
 to	
 learn	
 from	
 experience	
 E	
 with	
 respect	
 to	
 some	
 task	
 T	
 and	
 some	

performance	
 measure	
 P,	
 if	
 its	
 performance	
 on	
 T,	
 as	
 measured	
 by	
 P,	
 improves	
 with	
 experience	
 E	
 (Tom	
 Mitchell,1998).	
 	

ü  Neural	
 Network	
 (NN)	
 :	
 Neural	
 Network	
 modeling,	
 a	
 subfield	
 of	
 ML	
 is	
 algorithm	
 inspired	
 by	
 structure	
 and	
 funcMons	
 of	

biological	
 neural	
 nets	
 	

ü  Deep	
 Neural	
 Network	
 (DNN)	
 :	
 	
 (aka	
 deep	
 learning):	
 an	
 extension	
 of	
 NN	
 composed	
 of	
 many	
 layers	
 of	
 funcMonal	

neurons,	
 is	
 dominaMng	
 the	
 science	
 of	
 modern	
 AI	
 applicaMons	

ü  Supervised	
 Learning	
 (SL)	
 :	
 A	
 class	
 in	
 ML,	
 dataset	
 has	
 labeled	
 values,	
 use	
 to	
 predict	
 output	
 values	
 associated	
 with	
 new	

input	
 values.	

Deep
Neural Network

Many engineering problems can be solved using data-driven AI-based simulations

How to build a NN

ü  Define	
 a	
 NN	
 to	
 compute	
 predicMons	
 f(w,b,x)	
 as	
 funcMon	
 of	
 w,	
 b,	
 and	
 data	
 x	

ü  A	
 node	
 in	
 the	
 neural	
 network	
 is	
 a	
 mathemaMcal	
 funcMon	
 or	
 acMvaMon	
 funcMon	
 which	

maps	
 input	
 to	
 output	
 values.	
 	

ü  Weights	
 (w	
 =	
 w	
 –	
 λ	
 ∇C	
)	
 and	
 bias	
 (b)	
 are	
 the	
 sets	
 of	
 parameters	
 to	
 be	
 determined	

ü  Many	
 nodes	
 form	
 a	
 neural	
 layer,	
 links	
 connect	
 layers	
 together,	
 defining	
 a	
 NN	
 model	

ü  AcMvaMon	
 funcMon	
 (
 σ	
),	
 is	
 generally	
 a	
 nonlinear	
 data	
 operator	
 which	
 faciltates	

idenMficaMon	
 of	
 complex	
 features.	

C(w,b) ≡ 1
2n

|| y(x)− f (w,b, x) ||2
x
∑

ü  Define	
 a	
 cost/loss	
 func5on	
 C,	
 e.g.,	
 the	
 mean	
 squared	
 error	
 (MSE).	

ü  Minimize	
 C(w,b)	
 as	
 a	
 funcMon	
 of	
 the	
 weights	
 (w)	
 and	
 biases	
 (b),	
 casMng	
 it	
 as	
 an	

opMmizaMon	
 problem	
 using	
 the	
 gradient	
 descent	
 algorithm.	
 	

ü  To compute the gradient ∇C we need to compute the gradients ∇Cx separately for each training input, x, and then average them,
 ∇C = 1/n ∑∇Cx. Unfortunately, when the number of training inputs is very large this can take a long time, and learning thus occurs slowly.
ü  A way is to use stochastic gradient descent to speed up learning. The idea is to estimate the gradient ∇C by computing a small sample
 of randomly chosen training inputs, refer to as a mini-batch of input (mini-batched SGD).
ü  By averaging over this small sample it turns out that we can quickly get a good estimate of the true gradient ∇C, and this helps speed up
 gradient descent, and thus learning.
ü  Another randomly chosen mini-batch are selected and trained, until all the exhausted the training inputs are used. It is said to complete an
 epoch (iteration) of training, then more iteration.

How to build a NN
•  There are many parameters determining a NN and possible applications

–  How many layers, what type of layers, sizes, connectivity, what computation graph,
activations functions, etc. (model hyperparameters)

–  Algorithm hyperparameters – related to training, like learning rate, mini-batch, etc.

•  Examples of different NNs and applications
–  Multilayer Perceptron (MLP) and Convolutional NNs (CNNs)

have ”regular (steady) input and output” (feedforward/no cycles)
Mainly used for regression and image classification

–  Recurrent Neural Networks (RNNs)
have “time (step) dependent varying size of input” and “irregular” output
Used in speech, text, image, video recognition/classification

–  Generative Adversarial Networks (GANs)
have a pair of NNs gaming against each other – learning to
generate new data with the same statistics as the training set
Used in unsupervised learning, semi-supervised learning,
fully supervised learning, and reinforcement learning.

–  Reinforcement Learning
Software agents take actions in order to maximize the notion of
cumulative reward
Used in robot control, elevator scheduling, telecommunications,
backgammon, checkers and Go

–  ...

•  Networks become more complicated, DNNs

RNN#

LA Operations in DNNs

 . . .

Back

propagation

Forward

propagation

.

.

.

1

13

.

.

.

1

2

n1

.

.

.

1

2

nL-1

 . . .

input layer

hidden layer 1 hidden layer L-1

output
layer L

W1

WL

n1xM

1xnL-1

Training
data

matrix
X

size MxN

Outputs
Y

(size 1x nb)

M

N

1

N

Z1 = W1 A0 + b1
A1 = σ1 (Z1)

A0 = X

ZL-1 = WL-1 AL-2 + bL-1
AL-1 = σL-1 (ZL-1)

ZL = WL AL-1+ bL
AL = σL (ZL)

dZL = AL - Y
dWL = dZL ATL-1 / nb
dbL = np.sum(dZL, axis=1, keepdims =True)/nb

dZ1 = WT
2 dZ2 .* σ’1(Z1)

dW1 = dZ1 AT0 / nb
db1 = np.sum(dZ1, axis=1, keepdims =True)/nb

 . . .

 . . .

 . . .

0) 1) L-1) L)

L+1) 2L)

nb

•  Matrix-matrix (GEMM) multiplications
For performance computations must be organized in terms of GEMMs:

LA Operations in DNNs
•  Matrix-matrix (GEMM) multiplications

For performance computations must be organized in terms of GEMMs
•  LA can be sparse, or dense, low-rank matrices, etc.
•  Batched LA
•  Convolutions in Convolutional NNs (CNNs), with various ways to compute

–  Directly using batched LA
–  Batched GEMMs
–  FFTs – convolutions f * g of images f and filers g can be accelerated through FFT,

as shown by the following equality, consequence of the convolution theorem:

 f * g = FFT-1 [FFT(f) .* FFT(g)],

where .* is the Hadamard (component-wise) product, following the ‘.*’ Matlab notation

–  Winograd
•  Use of multi and mixed-precision calculations

MagmaDNN

Vendor
Libraries

Run-time/
comm. APIs

LA
libraries

Standard
LA APIs

 MAGMA Templates

BLAS API LAPACK API Batched BLAS API

MPI OpenMP MKL ESSL cuBLAS ACML

MAGMA (dense) MAGMA Batched MAGMA Sparse
 SLATE

Single Heterogeneous Node

Shared memory

ScaLAPACK API

Scalable LA on new architectures
 Data abstractions and APIs
 Heterogeneous systems portability

Tile algorithms
 LAPACK++
 BLAS++

MagmaDNN
High-performance data analytics
and machine learning for many-

core CPUs and GPU accelerators

Applications •  MagmaDNN is HP Data Analytics
and ML framework built around
the MAGMA libraries aimed at
providing a modularized and
efficient tool for training DNNs.

•  MagmaDNN makes use of the
highly optimized MAGMA libraries
giving significant speed boosts
over other modern frameworks.

MagmaDNN

Vendor
Libraries

Run-time/
comm. APIs

LA
libraries

Standard
LA APIs

 MAGMA Templates

BLAS API LAPACK API Batched BLAS API

MPI OpenMP MKL ESSL cuBLAS ACML

MAGMA (dense) MAGMA Batched MAGMA Sparse
 SLATE

Single Heterogeneous Node

Shared memory

ScaLAPACK API

Scalable LA on new architectures
 Data abstractions and APIs
 Heterogeneous systems portability

Tile algorithms
 LAPACK++
 BLAS++

MagmaDNN
High-performance data analytics
and machine learning for many-

core CPUs and GPU accelerators

Applications

0"

20"

40"

60"

80"

100"

120"

5000" 10000" 15000"

MAGMA,2"

MAGMA"

MKL"

EIGEN"S
p

e
e

d
u

p

Matrix sizes

SVD performance speedup

Scaling ML AI + HPC simulations to Exascale
●  A position paper addressing challenges in

integrating ML & traditional compute-intensive HPC simulations

R. Archibald, E. Chow, E. D'Azevedo, J. Dongarra, M. Eisenbach, R. Febbo, F. Lopez, D. Nichols, S. Tomov, K. Wong, J. Yin,
“Integrating Deep Learning in Domain Sciences at Exascale”,
Smokey Mountains Computational Sciences and Engineering Conference (SMC’2020), Aug. 26-28, 2020. (available at arXiv: 2011.11188)

●  Many ML/DL frameworks (TensorFlow, PyTorch, MxNet, etc.)
 - developed by industry;
 - often targeting cloud environments for data-driven applications;
 - they are not necessarily suitable for scaling HPC simulations on large-scale supercomputers

●  To address the issues, we build a software infrastructure specifically for integrating ML and HPC
simulations on petsscale to exascale heterogeneous systems: DNN + Workflow

1)  Build a new C++ modular DNN framework, MagmaDNN, which is based on the LA software,

MAGMA, for portability and scalability
2)  Provide a parallel workflow system to run combinations of ML & HPC codes
3)  Introduce algorithms for scheduling, auto tuning based and asynchronous solvers
4)  Discuss two DOE applications, materials science and climate data compression

Load Data

Preprocessing

Create/Load Model

Train Model

Predict Export Model

Design process

●  Similar to TF or PyTorch
●  MagmaDNN is designed/

optimized with this training
paradigm in mind.
However, it is customizable.

●  Load Data: Read-in any CSV, image, or other file
necessary for training.

●  Preprocessing: Shape data and store in tensors.

●  Create/Load Model: Restore a saved model or create
a new one using MagmaDNN’s Model class. Set
hyperparameters.

●  Train Model: Fit the network using SGD.

●  Predict: Use the fitted weights to predict class based
on new input.

●  Export Model: Save model to be used again.

Load Data

Preprocessing

Create/Load Model

Train Model

Predict Export Model

Workflow

Neural Network Ideas

Neural Networks are typically composed of layers
of linear transformations wrapped by activation
functions. The network is represented by some
function f.

After optimizing some loss criterion w.r.t. the
parameters of f, the function (or “network”)
becomes an accurate predictor of highly
abstracted data.

Other common, more complicated network types
exist: CNN, RNN, GANs, Belief Networks,
Boltzmann

Neural Network Ideas (cont.)

-  Layers
-  Neural Networks are comprised of

several layers put together.
-  Available Layers:

-  Input, Output (first and last layers of
the network)

-  Fully Connected (dense, linear
transformation)

-  Activation (activation function)
-  Conv2D, Pooling2D (convolutional

layer)

Input Layer

Fully Connected (FC)
Layer

Activation Layer (i.e
RELU, sigmoid…)

Convolution2D Layer

Pooling2D Layer

Output Layer

Compute Graph
sigmoid

+

b matmul

W x

-  All operations/math are put into
a compute graph.

-  Non-Eager
-  Gradient Support, Grad Tables

Operations & Compute Graphs

All Tensor operations are wrapped in an Operation class, which is used in the
compute graph. Operations also provide a modular interface for creating and
manipulating Tensors. They are created as shown:

Operation<float> *var = op::var<float> ("Var Name", {5, 4}, {GLOROT, {0.5, 0.2}}, HOST);

Var creates and

returns a new variable Tensor shape Tensor initializer. Options
are: GLOROT, UNIFORM,
CONSTANT, ZERO, ONE,

DIAGONAL, IDENTITY,
NONE

Tensor memory type.
Options are: HOST,

DEVICE, MANAGED,
CUDA_MANAGED

Operations & Compute Graphs (cont.)

Variables are Operations that wrap around Tensors. Operations are also used
for representing some math operation in the computational graph. For example:

Operation<float> *result = op::add(op::matmul(A, x), b);

Tensor<float> *result_tensor = result->eval();

This constructs a compute graph and eval() evaluates it into a Tensor. Available

operations are: Variable, Tanh, Sigmoid, Add, and Matmul. Since all of these are

inherited from Operation, it is simple to create/add new operations.

Operations & Compute Graph (Full Example)

auto A = op::var<float> ("A", {4, 5}, {GLOROT, {1.5, 2.0}}, MANAGED);

auto X = op::var<float> ("X", {5, 4}, {UNIFORM, {0.0, 1.0}}, MANAGED);

auto B = op::var<float> ("B", {4, 4}, {DIAGONAL, {1, 2, 3, 4}}, MANAGED);

/* compute some math operations */

auto result = op::add(op::matmul(A, X), B);

Tensor<float> *result_tensor = result->eval();

/* use results */

delete result; /* only need to delete head of tree */

delete result_tensor;

Memory Manager

-  Core Memory Kernel
-  4 memory types:

-  HOST (cpu memory)
-  DEVICE (gpu memory)
-  MANAGED (internal managed)
-  CUDA_MANAGED (cuda managed)

-  Supports interactions between all
memory types

-  Managed memory types must be
synced!

Tensors

Data with multiple axes.

Everything in MagmaDNN uses tensors.

Layers

Layers are a set of weights/biases and put a forward-prop function on the
compute graph. For instance:

layer::FullyConnectedLayer<float> *fc = layer::fullyconnected(input->out(), n_units);

This creates a weight, w, and bias, b, tensor and puts [W*input->out() + b] onto
the head of the compute graph defined by input->out().

Layers (Full Example)

auto data = op::var<float> ("data", {n_batches, size}, {UNIFORM, {-1.0, 1.0}}, DEVICE);

auto input = layer::input(data);

auto fc1 = layer::fullyconnected(input->out(), n_hidden_units);

auto act1 = layer::activation(fc1->out(), layer::TANH);

auto fc2 = layer::fullyconnected(act1->out(), n_output_classes);

auto act2 = layer::activation(fc2->out(), layer::SIGMOID);

auto output = layer::output(fc2->out());

Tensor<float> *forward_prop_result = output->out()->eval();

Training (example)

Tensor<float> data ({60000, 785}, HOST);

io::read_csv_to_tensor(data, "mnist_data_set.csv");

std::vector<Layer<float>> layers_vector;

/* Create Layers in Here as Shown Before... */

Optimizer<float> optimizer = optimizer::DistributedGradientDescentOptimizer(0.05);

Model<float> model (layers_vector, optimizer, batch_size);

model.fit(data, n_epochs);

Distributed Training
-  Many node training
-  Averages gradients
-  Implemented many strategies and optimizations (using CUDA-aware MPI)

MPI_Allreduce Asynchronous
training

Master-worker reduce Ring Allreduce

Accelerating CNNs in MagmaDNN with FFT

Ø  Convolutions Di,c * Gk,c of images Di,c and filers Gk,c can be accelerated through FFT,
as shown by the following equality, consequence of the convolution theorem:

 Di,c * Gk,c = FFT-1 [FFT(Di,c) .* FFT(Gk,c)],

where .* is the Hadamard (component-wise) product, following the ‘.*’ Matlab notation

Ø  Developed mixed-precision (FP16-FP32) FFT using the GPU’s Tensor Cores (TC) acceleration

Ø  Dynamic splitting to increase the FP16 accuracy, while using high-performance TC

 XFP32(:) = s1 X1FP16(:) + s2 X2FP16(:)

 [X1 X2] = FFT([X1 X2] in FP16+ (e.g., go to radix 4, where the FFT matrix is exact in FP16)

 FFT (X) ≈ s1 X1 + s2 X2

Reduced and Mixed Precision :
scaling performance on new hardware

ü  Recursive Radix-4 or Radix-8 FFT
implemented as batched matrix
multiplication on tensor cores

ü  4x4 Fourier matrices are exactly
representable in FP16, rational
approximation for 8x8 Fourier matrices

ü  2D FFT and 3D FFT implemented as
batched 1D FFT

ü  This approach has much higher accuracy
compared to FFT of FP16

ü  Key step is expressing vector in FP32 as scaled sum
of FP16 vectors

ü  x_fp32(:) = s1_fp32 * x1_fp16(:) + s2_fp32 * x2_fp16(:)

Enhance performance for large scale image
data applications

Accuracy of the
mixed-precision
(FP16-FP32)
FFT

Reference:
X. Cheng, A. Sorna , Ed D’Azevedo, K. Wong, S. Tomov, "Accelerating
2D FFT: Exploit GPU Tensor Cores through Mixed-Precision," The
International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC'18), ACM Student Research Poster, Dallas,
TX, November 11-16, 2018.

https://icl.utk.edu/projectsfiles/magma/pubs/77-mixed-precision-FFT.pdf
https://www.jics.utk.edu/recsem-reu/recsem18

Accelerating CNNs with Winograd’s minimal filtering algorithm

Ø  FFT Convolution is fast for large filters;
Typical filters are small, e.g., 3x3, where Winograds’s
algorithm has been successful;
In 2D, convolution of tile D of size 4x4 with
filter F of size 3x3 is computed as

 D * F = AT [[G D GT] .* [BT D B]] A

where B, G, and A are given on the right:

Ø  Computing for a number of filters, sliding the tile over a batch of images, each with a number of

channels, can be expressed as batched gemms, e.g.,
batch m n k (sizes coming from VGG-16 CONVOLUTION LAYERS)
16x64 12544 64 3
16x64 12544 64 64
16x16 12544 128 64
16x16 12544 128 128
…

Install and Build

Dependencies:

-  Cuda (>9.0)
-  CuDNN (>6.0)
-  Magma (>2.3.0) (>2.5.0 for half-precision)

Download MagmaDNN from
https://bitbucket.org/icl/magmadnn
or clone it using

hg clone https://bitbucket.org/icl/magmadnn

Compiling/Installing: Copy the make.inc file
from make.inc-examples/ to MDNN’s root,
change any necessary settings in make.inc and
then run

sudo make install

Testing: You should now be able to run the
below command

make testing && cd testing && sh run_tests.sh

this will run the default testers for the
MagmaDNN package.

Hyperparameter optimization
OpenDIEL architecture:
 (A) GUI launcher creates a configuration file for the workflow,
 and executive will read this file to set up workflows;
 (B) After initial configuration, executive starts all modules;
 (C) The modules have access to the communication library, and
 directly communicate or utilize tuple-space communication.

openDIEL is designed to scaling compute and
data intensive applications

ü  www.bitbucket.org/cfdl/opendiel	

ü  An	
 open	
 source	
 light	
 weight	
 parallel	
 workflow	

framework	
 designed	
 to	
 scale	
 and	
 run	
 inter-­‐disciplinary	

simulaMons	
 on	
 large-­‐scale	
 heterogeneous	
 HPC	

pla`orms.	
 	

ü  Schedule	
 and	
 run	
 a	
 collecMon	
 of	
 user’s	
 codes	
 (scripts,	

serial,	
 and	
 parallel	
 programs)	
 under	
 a	
 single	
 MPI	

executable,	
 similar	
 to	
 swib-­‐T,	
 is	
 ideal	
 for	
 combining	

compute-­‐intensive	
 and	
 data-­‐driven	
 applicaMons	

ü  Provide	
 two	
 communicaMon	
 interfaces,	
 a	
 direct	
 one	
 to	

one	
 communicator	
 and	
 a	
 asynchronous	
 tuple	
 space	

communicator,	
 for	
 exchanging	
 data	
 among	
 different	

programs.	

ü  Show	
 workflows	
 for	
 materials	
 sciences	
 and	
 climate	

applicaMons	

MagmaDNN training performance (single V100 GPU)

Data: 60,000 images, 28x28 pixels each

MagmaDNN scalability and SGD speedup

0"

1"

2"

3"

4"

5"

6"

7"

1" 2" 3" 4" 5" 6" 7" 8"

ASGD"Peak"

MagmaDNN"

S
p

e
e

d
u

p

Number of GPUs

Speedup vs. TensorFlow

Applications in Materials Science and Microscopy
 Using openDIEL to combine DFT, ML, MC on exascale platform Tight coupling of first

principles statistical
mechanics of materials to
calculate the temperature
dependence of materials -
requires the calculations of
many possible atomic
configurations within these
materials using a Monte
Carlo approach, where the
probability of the individual
states would be evaluated
using an expensive density
functional theory calculation.

Train a surrogate model that
can replace the expensive (in
the order of multiple node
hours per data point) first
principles calculation within
the Monte Carlo sampling of
possible configurations.

Image Compression for Climate Science Simulation

Compression	

Method	

(JPEG)	

Simulation Data
Barotropic Instability

Lossy Compression with
Reconstruction Artifacts

On	
 Node	
 	

In	
 Situ	
 Machine	

Learning	

Store	
 Final	

Machine	

Learning	

Super
Reconstruction

Minimize Data Movement
and Storage Store Lossy Image

Workflow to perform in-situ DL training for both compressed and original images

•  it is possible to train in situ networks
(RNNs) to reduce the error in lossy
compression—obtaining multiple
orders of improvement.

•  Going forward, it will be necessary
to further improve in situ
compression and analysis in order
to maximize discovery with HPC
simulations

MagmaDNN benchmarks and testing examples …

Current work and Future directions
•  Development in AI software and tools that scale well on Exascale systems is important, and even more critical

for AI frameworks that also work well across the existing spectrum of exascale applications

•  Performance portability and unified support on GPUs/CPUs
–  C++ templates w/ polymorphic approach;
–  Parallel programming model based on CUDA, OpenMP task scheduling, and MAGMA APIs.
–  Shows potential; still lacks the arsenal of features present in other popular frameworks

•  Hyperparameter optimization
–  Critical for performance to provide optimizations that are application-specific;
–  A lot of work has been done (on certain BLAS kernels and the approach) but still need a simple framework to handle the entire library;
–  Current hyperparameter optimization tool must be further extended in functionalities
–  Add visualization and OpenDIEL to support ease of GPU deployment over large scale heterogeneous systems

•  Extend functionality, kernel designs, and algorithmic variants
–  BLAS, Batched BLAS, architecture and energy-aware
–  New algorithms and building blocks, architecture and energy-aware
–  Distribution strategies and (asynchronous) techniques for training DNN on large scale systems

•  Use and integration with applications of interest

Collaborators
 and Support

MAGMA team
http://icl.cs.utk.edu/magma

PLASMA team
http://icl.cs.utk.edu/plasma

Collaborating partners
University of Tennessee, Knoxville
LLNL
ORNL
ANL
SANDIA
University of California, Berkeley
University of Colorado, Denver
TAMU
INRIA, France
KAUST, Saudi Arabia
University of Manchester, UK

CEED: Center for
Efficient Exascale Discretizations

