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Dense Linear Algebra

Needed in a wide variety of domain sciences
Can power ML and data analytics too:

Linear systems: Solve Ax =b

«  Computational electromagnetics, material science, applications using
boundary integral equations, airflow past wings, fluid flow around ship
and other offshore constructions, and many more
Least squares: Find x to minimize || Ax-b ||
«  Computational statistics (e.g., linear least squares or ordinary least squares),
econometrics, control theory, signal processing, curve fitting, and many more
Eigenproblems: Solve Ax = A x

- Computational chemistry, quantum mechanics, material science, face recognition,
PCA, data-mining, marketing, Google Page Rank, spectral clustering, vibrational
analysis, compression, and many more

SVD: A=UZXV*(Au=o0vandA* =qou)

«  Information retrieval, web search, signal processing, big data analytics, low rank
matrix approximation, total least squares minimization, pseudo-inverse, and many more

Many variations depending on structure of A

*  Acan be symmetric, positive definite, tridiagonal, Hessenberg, banded,
sparse with dense blocks, etc.

cecoccoeccocee

DLA is crucial to the development of sparse solvers
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High-performance LA for modern architectures

* Leverage latest numerical

algorithms and building blocks
MAGMA, PLASMA, SLATE (DOE funded)

Use of BLAS for portability

ot LINPACK (70’s)
MAGMA Sparse, POMPEI project et Gt Level 1 BLAS
. LAPACK (80’s)
¢ P0|ym°rphlc approaCh . (Blocking, cache Level 3 BLAS
Use MAGMA sub-packages for various friendly)
architectures; ScaLAPACK (90’s)
Provide portability through single (Distributed Memory) PBLAS
templated sources using C++ PLASMA (00’s) .
New Algorithms BLAS on tiles +
(many-core friendly) DAG scheduling
» Programming model MAGMA YT BLAS tasking +
BLAS tasking + scheduling __ ,
Hybrid Algorithms rees (CPU/GPU / Xeon Phi )
(heterogeneity friendy) hybrid scheduling

 Open standards

OpenMP4 tasking + MPI Use of BLAS is in the heart of ML performance and portability too!
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&

HPC software design - use Level 3 BLAS

Nvidia P100, 1.19 GHz, Peak DP = 4700 Gflop/s

4800 I I I I I I I I I I
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Matrix size (N), vector size (NxN)

Nvidia P100

The theoretical peak double precision is 4700 Gflop/s U .
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What other LA is needed for Data Analytics?

« Traditional libraries like MAGMA can be used as backend to accelerate the LA computations
In data analytics applications

 Need support for
1) New data layouts, 2) Acceleration for small matrix computations, 3) Data analytics tools

Need data processing and analysis support for Small matrices, tensors, and batched
Data that is multidimensional / relational computations

Fixed-size
batches

batches

Variable-size

Dynamic batches

matrix 3 order tensor

Tensors



Data Analytics and LA on many small matrices

(Batched LA)

* Machine learning,
« Data mining,

* High-order FEM,
* Numerical LA,

* Graph analysis,

Data Analytics and associated with it Linear Algebra on small LA
problems are needed in many applications:

* Neuroscience,

* Astrophysics,

¢ Quantum chemistry,

*  Multi-physics problems,
« Signal processing, etc.

Sparse/Dense solvers & preconditioners

Machine learning

Convolution Pooling

Convolution Fully Output
connected predictions

Sparse / Dense Matrix DAG-based factorization

System m=) Batched LAPACK
111 A12 AlB A14_ i Y-, ,,,,,,:i @
A, ®0 0 Single calls to
“N\N\A ’ => Batched BLAS
Ay .
A41

Applications using high-order FEM

o o | | [N S

Output On:L, E"_l_| ------- ~ew__ChickenN 4
T %ﬂ%ﬁ%
i ) T -—o| U [y I?E _______ -~~~ dog 0.01

Convolution of Filters F; (feature detection) and input image D:
» Forevery filter F, and every channel, the computation for
every pixel value O, , is a tensor contraction:

On,k = EDk.iFn.i

Plenty of parallelism; small operations that must be batched
With data “reshape” the computation can be transformed into
a batched GEMM (for efficiency; among other approaches)

«  Matrix-free basis evaluation needs efficient tensor contractions,
Cil,i2,i3 = EAk,ilBk,iz,zs
k

«  Within ECP CEED Project, designed MAGMA batched methods
to split the computation in many small high-intensity GEMMs,
grouped together (batched) for efficient execution:

Batch_{ C,; = AT B,,, for range of i3 }



Programming model: BLAS + scheduling
ML also construct compute graphs and schedule execution

MAGMA

hybrid scheduling

4 GPUs + CPU

BLAS tasking +

(®)]

=

g T an IGPUI an
8 l /GPU

o R

| -

g Critical Path

L

Execution trace with hybrid task scheduling

MAGMA Dynamic

—

Left-looking hybrid Cholesky

to parallel hybrid
MAGMA

From sequential
LAPACK )
for(j=0, j<n; j+=nb) {

ib = min(nb, n-); J

zherk( “Upper”, “Conj
&jb, &j, &one,

if (j+jb < n)
zgemm( "Conjugahe+
dA(0,)), &ld
zpotrf2( “Upper”, &jb
if (info 1= 0)
*info +=j;
If (+jb) < n) {

ztrsm( “Left’, “Uppd
&jb, &n
}

}

1 for(j=0, j<n; j+=nb) {
2

3

4

}

jb = min(nb, n-j);
magma_zherk( MagmaUpper, MagmaConjTrd
jb, j, one, dA(0,j), Idda, one, d
magma_zgetmatrix_async( jb, jb, dA(j,j), Idd|
if (j+jb < n)
magma_zgemm( MagmaConjTrans, Magm
dA(0,)), Idda, dA(0,j+jb), ldd
magma_event_sync( event);
zpotrf( MagmaUpperStr, &jb, work, &jb, info);
if (info != 0)
*info +=j;
magma_zsetmatrix_async(jb, jb, work, jb, dA
If (j+jb) <) {
magma_event_sync( event );
magma_ztrsm( MagmalLeft, MagmaUpper,
jb, n-j-jb, one, dA(j,j), Idda,
}

MAGMA runtime environment

[A. Haidar, A. YarKhan, C. Cao, P. Luszczek, S. Tomov, and J. Dongarra, “Flexible Linear Algebra

D and Scheduling with Chol

P

ky Factorization”, 17th |EEE International

I Conference on High Performance Computing and Communications, New York, August 2015. ]

Note: * MAGMA and LAPACK look similar
« Difference is lines in red, specifying data transfers and dependencies
« Differences are further hidden in a dynamic scheduler making the top level

representation of MAGMA algorithms almost identical to LAPACK
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Main Classes of Algorithms in MAGMA

* Hybrid algorithms

» GPU-only algorithms

Use both CPUs and GPUs

Entirely GPU code

MAGMA 2.3 LU factorization in double precision arithmetic

Intel Xeon E5-2650 v3 (Haswell) NVIDIA Kepler GPU NVIDIA Pascal GPU NVIDIA Volta GPU
CPU 2x10 cores @ 2.30 GHz m 15MP x 192 @ 0.88 GHz P100 56 MP x 64 @ 1.19 GHz V100 80 MP x 64 @ 1.38 GHz

6000
5000 ==\/100
©w
[«
S =®=P100
™ 4000
(O]
§ =W=K40
g 3000
S
o ==CPU
43
o 2000
1000
0 T T T T T T T T T T T T T T 1
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k 32k 34k 36k
Matrix size N x N
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Main Classes of Algorithms in MAGMA

o . . .
Hybrld a|90r|thm3 Performance of LU in DP
» Use both CPUs and GPUs CPU |2nxt% ﬁi?é‘fé?ﬁ’géi (ZHasweII) , s gj(;/:\%\ﬁta G1PéJs N
: | PCle e
» GPU-only algorithms
 Entirely GPU code 6000 l
|
: 5000 -
* QOut-of-GPU memory algorithms ,
. s . ¥ 4000
« LAthatis too large to fit into the main CPU/GPU memory S o
A. Haidar, K. Kabir, D. Fayad, S. Tomov, and J. Dongarra, “Out of Memory SVD ,_,(—3 3000 — O B
Solver for Big Data”, IEEE HPEC, September, 2017. 0] |« g “Hmagma_dgetrf
2000 2 %
3 . | S
Yuechao Lu, et al. on out-of-GPU memory GEMMs in RSVD, TASMANIAN, etc. 1000 -~ O
|
O L ]
10K 20K 30K 40K 50K 60K 70K 80K
Matrix size
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Main Classes of Algorithms in MAGMA

* Hybrid algorithms

e Use both CPUs and GPUs

» GPU-only algorithms

« Entirely GPU code

* QOut-of-GPU memory algorithms

« LAthatis too large to fit into the main CPU/GPU memory
. I\/I|xed -precision LA

Use new hardware features, e.g., Tensor Cores

A. Haidar, P. Wu, S. Tomov, and J. Dongarra, “Investigating half precision
arithmetic to accelerate dense linear system solvers”, SC'17 ScalA17
workshop, November 2017.

A. Haidar, S. Tomov, and J. Dongarra, and N. Higham, “Harnesing GPU Tensor
Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative
Refinement Solvers”, SC'18 (accepted), November 2018.

Posters (GTC'18 2" place, ISC'18 15t place; 11K downloads in a month)

o N & O

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy;

FP16-TC->64 dhgesv| ' ' ' ! ]
I FP16->64 dhgesv 2 1
FP32->64 dsgesv 410°
|-FPeddgesv | 37 .. :

.
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Main Classes of Algorithms in MAGMA
Hybrid algorithms

Use both CPUs and GPUs

GPU-only algorithms

Entirely GPU code

Out-of-GPU memory algorithms

LA that is too large to fit into the main CPU/GPU memory

Mixed-precision LA

Use new hardware features, e.g., Tensor Cores

Energy efficient

Build energy awareness and tradeoff with performance

Energy efficiency
(under ~ the same power draw)

... and 76 Gflop/Watt
using mixed-precision !

25

GFLOPs / Watt

\\\\$
20
10x
15
10
| il

0
CPU K40 P100 V100
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Main Classes of Algorithms in MAGMA
* Hybrid algorithms

+” Use both CPUs and GPUs
* GPU-only algorithms i Atnwbrgthystessars

« Entirely GPU code 3000 medium sizes

] 2 sizes Switch to non-

* Qut-0f-GPU memory algorithms g | Lo batched

» LAthat s too large to fit into the main CPU/GPU memory > C=C+A'B
* Mixed-precision LA T

* Use new hardware features, e.g., Tensor Cores : *Stnderd dgemm BLASS
. Energy efﬁCient 50~1000 matrices of size

 Build energy awareness and tradeoff with performance
 Batched LA

* LA on many small matrices

cLCoor NN
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Main Classes of Algorithms in MAGMA
* Hybrid algorithms

e Use both CPUs and GPUs

» GPU-only algorithms

» Entirely GPU code

* QOut-of-GPU memory algorithms

« LAthatis too large to fit into the main CPU/GPU memory Strong scalability of 3D FET on Summit (N = 1024)
* Mixed-precision LA

- x 6V100
« Use new hardware features, e.g., Tensor Cores o .40 Power

* Energy efficient

 Build energy awareness and tradeoff with performance > Assuming max bandwidth

200 22 x 12.5 GBJs = 50 GBls
o B t h d L A + Achieved performance is
dicne

200 1223/32 = 38 Gflop/s per node

L1111

1T
[2)

800

Memory bound scalability peak:

Gflop/s

. » or ~25 GB/s (this is maximum
* LA on many small matrices o ™ fthere is no duplexing)
1 2 4 8 16 32
P F FT # nodes
» FFTs, convolutions, auxiliary routines (transposes, matricizations, etc.)
mHElNIVERSITYof
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Al, ML, NN, DNN, data analytics
Many engineering problems can be solved using data-driven Al-based simulations

Nﬁi‘\c‘\a\ Intelligencg

XK
WYY A
AN
(1

] O+ y2
VAR
¥ \(l

@+ y3

v’ Artificial Intelligence (Al): science and engineering of making intelligent machines to perform the human tasks (John
McCarthy,1956). Al applications is ubiquitous.

v" Machine learning (ML) : A field of study that gives computers the ability to learn without being explicitly programmed
(Arthur Samuel, 1959). A computer program is said to learn from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured by P, improves with experience E (Tom Mitchell,1998).

v" Neural Network (NN) : Neural Network modeling, a subfield of ML is algorithm inspired by structure and functions of
biological neural nets

v" Deep Neural Network (DNN) : (aka deep learning): an extension of NN composed of many layers of functional
neurons, is dominating the science of modern Al applications

v Supervised Learning (SL) : A class in ML, dataset has labeled values, use to predict output values associated with new
input values.
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How to build a NN

C(w,b) = %En y(x)= f(w,b,x) I

Input Hidden Layer Output
Layer

v
v

Define a cost/loss function C, e.g., the mean squared error (MSE).

Minimize C(w,b) as a function of the weights (w) and biases (b), casting it as an
optimization problem using the gradient descent algorithm.

<

Define a NN to compute predictions f(w,b,x) as function of w, b, and data x

A node in the neural network is a mathematical function or activation function which
maps input to output values.

Weights (w=w-=A VC) and bias (b) are the sets of parameters to be determined
Many nodes form a neural layer, links connect layers together, defining a NN model

Activation function ( 0 ), is generally a nonlinear data operator which faciltates
identification of complex features.

v To compute the gradient V C we need to compute the gradients V C, separately for each training input, x, and then average them,
Vv C =1/n ) VC,. Unfortunately, when the number of training inputs is very large this can take a long time, and learning thus occurs slowly.
v Away is to use stochastic gradient descent to speed up learning. The idea is to estimate the gradient V C by computing a small sample
of randomly chosen training inputs, refer to as a mini-batch of input (mini-batched SGD).
v’ By averaging over this small sample it turns out that we can quickly get a good estimate of the true gradient V C, and this helps speed up

gradient descent, and thus learning.

v Another randomly chosen mini-batch are selected and trained, until all the exhausted the training inputs are used. It is said to complete an
epoch (iteration) of training, then more iteration.
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How to build a NN

* There are many parameters determining a NN and possible applications
— How many layers, what type of layers, sizes, connectivity, what computation graph,

activations functions, etc. (model hyperparameters)

— Algorithm hyperparameters - related to training, like learning rate, mini-batch, etc.

« Examples of different NNs and applications

Multilayer Perceptron (MLP) and Convolutional NNs (CNNs
have "regular (steady) input and output” (feedforward/no cycles
Mainly used for regréssion and image classification

Recurrent Neural Networks (RNNs) . ,
have “time (step) dependent varying size of input” and “irregular” output

Used in speech, text, image, video recognition/classification

Generative Adversarial Networks (GANsr)] .

have a pair of NNs gaming against each other — learning to
enerate new data with the same statistics as the training set
sed in unsupervised learning, semi-supervised learning,

fully supervised learning, and reinforcement learning.

Reinforcement Learning

Software agents take actions in order to maximize the notion of
cumulative reward . o
Used in robot control, elevator scheduling, telecommunications,
backgammon, checkers and Go

* Networks become more complicated, DNNs

Recurrent Neural Networks: Process Sequences

one to one

[

one to many

it

t

-
1)

many to one many to many many to many
t I

A DR DA

i t oy i K

oon  ooo ol

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282

shallow

First

CNN-based winner ‘152 Iayers‘ ’152 Iayers‘ ’152 Iayers‘

16.4

2012

Linetal Sanchez & | Krizhevsky et al
Perronnin (AlexNet)

11.7 22 layers
1.3

6.7

: 5.1
- 3.6 3 2.3 .
H B =

2 2014 2014 2015 2016 2017 Human
Zeiler & Simonyan &  Szegedy et al Heetal Shao et al Huetal  Russakovsky etal
Fergus  Zisserman (VGG) (GoogleNet)  (ResNet) (SENet)




LA Operations in DNNs

* Matrix-matrix (GEMM) multiplications
For performance computations must be organized in terms of GEMMs:

0 1) L-1) L)
) :> Zy =Wy Ag+D , F_ONV? d N Z =W Aptb 4 =W A+
A= X A=0:(4) propagation AL=01(Z44) A =>0L (Z)
(Ib-) N M] [ [ [ @ W1an-1 ‘\
L
\Training @\
| data | N
| matrix W . . _ 1 Outputs
M : X > | . Y
! y output (size 1x nb)
:size MxN W _ ] > layer L
l input layer ~ @
& hidden layer 1 hidden layer L-1
2L o = )
dZ, =W',dZ, " 074(Z) Back dZ_ =A_-Y
dW1 = le ATO / nb < O n m | dWL = dZL ATL—l / I’lb

db, =np.sum(dZ,, axis=1, keepdims =True)/nb propagation db, =np.sum(dZ,, axis=1, keepdims =True)/nb icLd
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LA Operations in DNNs

- Matrix-matrix (GEMM) multiplications
For performance computations must be organized in terms of GEMMs

* LA can be sparse, or dense, low-rank matrices, etc.

- Batched LA

» Convolutions in Convolutional NNs (CNNs), with various ways to compute

— Directly using batched LA
— Batched GEMMs

— FFTs — convolutions f * g of i |maFes f and filers g can be accelerated through FFT,
as shown by the foIIowmg equality, consequence of the convolution theorem:

f*g=FFT'[FFT(f).*FFT(g)1,

where .* is the Hadamard (component-wise) product, following the *.*’ Matlab notation
— Winograd

* Use of multi and mixed-precision calculations

v NIVERSITYof
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MagmaDNN

ceecee

» MagmaDNN is HP Data Analytics
— and ML framework built around
the MAGMA libraries aimed at
providing a modularized and
efficient tool for training DNNSs.

Applications

High-performance data analytics 2322
MagmaDNN and machine learning for many-

core CPUs and GPU accelerators %

Output @,
| O oo 4|
o :

(=

» MagmaDNN makes use of the
highly optimized MAGMA libraries
giving significant speed boosts
over other modern frameworks.

Scalable LA on new architectures

MAGMA Templates Data abstractions and APIs
Heterogeneous systems portability

e ™ 1
Single Heterogeneous Node

Tile algorithms
SLATE  LAPACK++

BLAS++ MAGMA (dense) MAGMA Batched MAGMA Sparse
< J
————————————————————————————————— Shared memory
[ScaLAPACKAPI] [ BLAS AP H LAPACK AP H Batched BLAS API
s Wome W, W,

v NIVERSITYof
icLdL>
INNIOVATIVE TENNESSEE

COMPUTING LABORATORY and Computer Science




MagmaDNN

cececccecer

Applications : |
High-performance data analytics 2322 ey
MagmaDNN and machine learning for many- | = o |
core CPUs and GPU accelerators D oo DA R L
: Scalable LA on new architectures
MAGMA Templates Data abstractions and APIs
L Heterogeneous systems portability
e ™
Single Heterogeneous Node
Tile algorithms
SLATE  LAPACK++
BLAS++ MAGMA (dense) MAGMA Batched MAGMA Sparse
- Y,

[ScaLAPACK API]

Shared memory

[ BLAS API ] [ LAPACK API ] [ Batched BLAS API

MKL ESSL

cuBLAS

ACML

LA D Standard
libraries LA APIs

Run-time/
comm. APIs

Vendor
Libraries

SVD performance speedup

120

/1
<MAGMA-2

“O*MAGMA

J o =<>=MKL

EIGEN

5000 10000 15000
Matrix sizes
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Scaling ML Al + HPC simulations to Exascale

e Aposition paper addressing challenges in
integrating ML & traditional compute-intensive HPC simulations

R. Archibald, E. Chow, E. D'Azevedo, J. Dongarra, M. Eisenbach, R. Febbo, F. Lopez, D. Nichols, S. Tomov, K. Wong, J. Yin,
“Integrating Deep Learning in Domain Sciences at Exascale”,
Smokey Mountains Computational Sciences and Engineering Conference (SMC’2020), Aug. 26-28, 2020. (available at arXiv: 2011.11188)

e Many ML/DL frameworks (TensorFlow, PyTorch, MxNet, etc.)
- developed by industry;
- often targeting cloud environments for data-driven applications;
- they are not necessarily suitable for scaling HPC simulations on large-scale supercomputers

o To address the issues, we build a software infrastructure specifically for integrating ML and HPC
simulations on petsscale to exascale heterogeneous systems: DNN + Workflow

1) Build a new C++ modular DNN framework, MagmaDNN, which is based on the LA software,
MAGMA, for portability and scalability

2) Provide a parallel workflow system to run combinations of ML & HPC codes

3) Introduce algorithms for scheduling, auto tuning based and asynchronous solvers

4) Discuss two DOE applications, materials science and climate data compression

e INIVERSITYof
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Design process

Similar to TF or PyTorch

MagmaDNN is designed/
optimized with this training
paradigm in mind.

However, it is customizable.

Load Data

Preprocessing

Create/Load Model

Train Model
Export Model Predict
cLCor AT

N
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Workflow

o Load Data: Read-in any CSV, image, or other file
necessary for training.

o Preprocessing: Shape data and store in tensors.

o Create/Load Model: Restore a saved model or create

a new one using MagmaDNN’s Model class. Set
hyperparameters.

» Train Model: Fit the network using SGD.

o Predict: Use the fitted weights to predict class based
on new input.

o Export Model: Save model to be used again.

Load Data

Preprocessing

Create/Load Model

Train Model
Export Model Predict
cLoor AN
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Neural Network Ideas

Input

Hidden

Neural Networks are typically composed of layers
of linear transformations wrapped by activation
functions. The network is represented by some
function f.

After optimizing some loss criterion w.r.t. the
parameters of f, the function (or “network”)
becomes an accurate predictor of highly
abstracted data.

Other common, more complicated network types
exist: CNN, RNN, GANs, Belief Networks,
Boltzmann

el NIVERSITYof
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Neural Network Ideas (cont.) _

Activation Layer (i.e
- Layers RELU, sigmoid...)

Neural Networks are comprised of

several layers put together.
Available Layers:
- Input, Output (first and last layers of

the network)
Fully Connected (dense, linear Pooling2D Layer
transformation)
Activation (activation function)
Conv2D, Pooling2D (convolutional

layer)

Convolution2D Layer

Input Layer

ue INIVERSITYof
ICL'L/ ur
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Compute Graph

- All operations/math are put into
a compute graph.

- Non-Eager

- Gradient Support, Grad Tables

ICL 1 \ ur el NIVERSITYof
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Operations & Compute Graphs

All Tensor operations are wrapped in an Operation class, which is used in the

compute graph. Operations also provide a modular interface for creating and
manipulating Tensors. They are created as shown:

Operatlon<float> *var = op::var<float> ( , {GLOROT, }}, HOST);
returns a new variable Tensor shape Tensor initializer. Options Tensor memory type.
are: GLOROT, UNIFORM, Options are: HOST
CONSTANT, ZERO, ONE, DEVICE. MANAGED
DIAGONAL, IDENTITY, CUDA MANAGED

NONE ;

‘ mHElNIVERSITYof
ICL [ENN ESSEE
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Operations & Compute Graphs (cont.)

Variables are Operations that wrap around Tensors. Operations are also used
for representing some math operation in the computational graph. For example:

Operation< > *result = ( (A, x), b);

Tensor< > *result tensor = result-> (),

This constructs a compute graph and eval() evaluates it into a Tensor. Available
operations are: Variable, Tanh, Sigmoid, Add, and Matmul. Since all of these are

inherited from Operation, it is simple to create/add new operations.

v NIVERSITYof
ICLL
INNIOVATIVE EEEEEEEEE

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee




Operations & Compute Graph (Full Example)

auto A = op::var<float> ("A", { }, {GLOROT, { }}, MANAGED) ;
auto X = op::var<float> ("X", { }, {UNIFORM, { }}, MANAGED) ;
auto B = op::var<float> ("B", { }, {DIAGONAL, { }}, MANAGED) ;

/* compute some math operations */

auto result = ( (A, X), B);
Tensor<float> *result tensor = result-> ()’
/* use results .... */

delete result; /* only need to delete head of tree */

delete result tensor;

|CL ‘} U\r v NIVERSITYof
INNIOVATIVE TENNESSEE

COMPUTING LABORATORY and Computer Science




Memory Manager

Core Memory Kernel

4 memory types:
HOST (cpu memory)
DEVICE (gpu memory)
MANAGED (internal managed)
CUDA_MANAGED (cuda managed)

Sﬁpports interactions between all
memory types

Managed memory types must be
synced!

HOST

HOST

e

£

22N\

CUDA

MANAGED /'

CUDA

\MANAGED

icLL>
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Tensors

Data with multiple axes.

Everything in MagmaDNN uses tensors.

Scalar Vector Matrix Tensor
M AR
341 I[17][5 4]
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Layers

Layers are a set of weights/biases and put a forward-prop function on the
compute graph. For instance:

layer: :FullyConnectedLayer< > *fc = (input-> (), n_units);

This creates a weight, w, and bias, b, tensor and puts [W*¥input->out() + b] onto
the head of the compute graph defined by input->out().
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Layers (Full Example)

auto data = op::var<float> ( , {n_batches, size}, {UNIFORM, ({
auto input = (data) ;

auto fecl = (input-> (), n_hidden units);
auto actl = (fcl-> (), layer: :TANH) ;

auto fec2 = (actl-> (), n_output classes);
auto act2 = (£c2-> (), layer::SIGMOID) ;

auto output = (£fc2-> (),

Tensor<float> *forward prop result = output-> ()-> ();

}}, DEVICE)
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Training (example)

Tensor<float> ({ }, HOST) ;

(data, "mnist data set.csv");

std: :vector<Layer<float>> layers vector;

/* Create Layers in Here as Shown Before... */

Optimizer<float> optimizer = ( ) ;
Model<float> (layers vector, optimizer, batch size);

model. (data, n_epochs) ;
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Distributed Training

Many node training
Averages gradients
Implemented many strategies and optimizations (using CUDA-aware MPI)

Master-worker reduce Ring Allreduce

Asynchronous
MPI_Alireduce ynchr
training
v NIVERSITYof
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Accelerating CNNs in MagmaDNN with FFT

» Convolutions D, . * G, . of images D, . and filers G, . can be accelerated through FFT,
as shown by the following equality, consequence of the convolution theorem:

D,. * G, = FFT' [ FFT(D, ) .* FFT(G,,) ],

where .* is the Hadamard (component-wise) product, following the *.*’ Matlab notation

» Developed mixed-precision (FP16-FP32) FFT using the GPU’s Tensor Cores (TC) acceleration
» Dynamic splitting to increase the FP16 accuracy, while using high-performance TC

Xep3a(:) = 81 X1ppeg(c) + 55 X2epyg(:)
[X1 X2] = FFT([ X1 X2] in FP16+ (e.g., go to radix 4, where the FFT matrix is exact in FP16)

FFT (X)=s, X1 +s, X2
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Reduced and Mixed Precision :
scaling performance on new hardware

0.00010
VU W

Enhance performance for large scale image

04 data applications

03 v' Recursive Radix-4 or Radix-8 FFT
| 0.00006 £ implemented as batched matrix
multiplication on tensor cores

n cufFFT

h
0
Spl

— 16 ..
Half Precisi
L}

o
L]

[

L]

-

NN

v 4x4 Fourier matrices are exactly
0.1 - representable in FP16, rational

———————
-

B approximation for 8x8 Fourier matrices

1 T 1

: . . : - —L 0.00000 v 2D FFT and 3D FFT implemented as
A S A batched 1D FFT

Input Size

v This approach has much higher accuracy

» : : :
Key step is expressing vector in FP32 as scaled sum compared to FFT of FP16

of FP16 vectors
v x_fp32(:) =s1_fp32 * x1_fp1é(:) +s2_fp32 * x2_fp16(:)
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Accuracy of the
mixed-precision
(FP16-FP32)
FFT

Reference:

X. Cheng, A. Sorna , Ed D’Azevedo, K. Wong, S. Tomov, "Accelerating
2D FFT: Exploit GPU Tensor Cores through Mixed-Precision,” The
International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC'18), ACM Student Research Poster, Dallas,
TX, November 11-16, 2018.

https://icl.utk.edu/projectsfiles/magmalpubs/77-mixed-precision-FF T.pdf
https://www.jics.utk.edu/recsem-reu/recsem18

0.00025

0.0002 —Dynamic Splitting

00001 ~——CUFFT16 (Error

scaled by 10/-3)

Error

0.0001

0.00005

16 64 256 1024 4096

Input matrix size (M * N)

16384 65536

Accelerating 2D FFT: Exploit GPU Tensor Cores through Mixed-Precision
Xiaohe Cheng, Anumeena Sorna, Eduardo D’Azevedo (Advisor), Kwai Wong (Advisor), Stanimire Tomov (Advisor)

Hong Kong University of Science and Technology, National Institute of Technology, Oak Ridge National Laboratory, University of Tennessee

Overview

Q 2D FFT in HPC applications
= Frequency domain analysis
= Quantum cluster simulations

Additional Observatlons
Q For fixed number of S92 ot mumber
input elements, the —
accuracy is affected by “*

Our Proposed Approach

Q Implementing 2D FFT — 1D FFT: Apply Cooley-Tukey algorithm, choose N1 = 4 (radix-4)
Y=F-X-F" to balance execution speed and accuracy.

- Reshape & B
Q Large volume and high parallelism ¥ l 1 Transpose N2:Point DFTe the shape of matrix.
= Exploit modern parallel architectures DrTow Do 5 F{artncular matrix
= Graphics Processing Units (GPUs) each row ach column M ﬁ%le l“ ll d!menslons lead to ) .
= Nvidia CUDA Q To utilize oolumn major 1D higher accuracy, which

can be exploited by o
FFT applications.

FFT routine
Y=F-(F- -0
© m  Oranspose

Take N1 smallr OFTs of

Py inthe combine step, | T

lerealmpod mk)in 'h H. ‘multiply each element by
FRE et e s

R e

Q cuFFT library: current state of the art, but can
NOT benefit from the FP16 arithmetic on
recent hardware due to accuracy limitations

* cuFFT does not

achieve the same
level of acceleration
as cuBLAS GEMM

+ o implomeniaton we
ify the OF 1 kool to

< Mixed precision DFT: dynamic splitting ottt rarepes
= Linearity of FFT allows 32 Bit Vector XOE!
the separate computation aXpi(:) + BXio(:) 155 | 165
of FFT(X,) and FFT(X,)) i a -~ infinty norm of nput
in half precision 85 [ 18] 5 iy nomm of roscue

Experimental Results

Q The method preserves high accuracy,
even with growing matrix sizes

0.00025

Conclusions & Future Work

Q Our dynamic splitting method computes 2D fast
transform efficiently by utilizing the hardware
advancement in half-precision floating-point arit

Q The implementation effectively emulates single
precision calculation, and produces highly accul
results from a variety of inputs

Q The speed of current cuBLAS-based implement

inferior to cuFFT library, but optimizations are a
= Tiled matrix transpose via GPU shared me
= Pre-computation of twiddle factors
= Combination of real and imaginary operati

GEMM 320%
FFTFP16  17.02%
FFTFP32 12.33%

QO Results: Tensor Core accelerated FFT &
improved accuracy
= Straightforward CUDA implementation
costs ~2.5x time of cuFFT32
= Error within 104, 1000x better than
CuFFT16

Q The cost of dynamic splitting and combine
is not significant

00002 «Dynamic Splitting

Motivation — o :?:,T{'.?ﬂg Q Input-aware auto-tuning splitting algorithm is to
t ——CUFFT16 (Error = Combine designed to support ill-conditioned inputs. It ma

QO Mixed-precision methods benefit both
computation and memory
Q Tensor cores on new GPU architecture
= Matrix-multiply-and-accumulate units
with throughput up to 125 TFLOPS
= Multiply Inputs: FP16 (half type) only
[ € [€ €[ €| € [M[mmIM[M[mmIM[Mm
Q FFT properties: linearity, numerical
stability, intensive matrix multiplications

0001 scaled by 10-3) improve execution speed and accuracy.
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Accelerating CNNs with Winograd's minimal filtering algorithm

> FFT Convolution is fast for large filters;
Typical filters are small, e.g., 3x3, where Winograds'’s

1 0 -1 0
algorithm has been successful; BT _ |0 1 1 0
In 2D, convolution of tile D of size 4x4 with SO
filter F of size 3x3 is computed as 1 0 0
*E = AT T * [RT G= % —% %
D*F=AT[[GDG'].*[BTDB]]A 2 : 2
. . r 11 1 0
where B, G, and A are given on the right: AT = o 1 -1 _1]

» Computing for a number of filters, sliding the tile over a batch of images, each with a number of
channels, can be expressed as batched gemms, e.g.,

batch m n Kk (sizes coming from VGG-16 CONVOLUTION LAYERS)
16x64 12544 64 3

16x64 12544 64 64

16x16 12544 128 64

16x16 12544 128 128 icLL> fggﬁﬁgggg
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Install and Build

Dependencies:

- Cuda (>9.0)
- CuDNN (>6.0)
- Magma (>2.3.0) (>2.5.0 for half-precision)

Download MagmaDNN from
https://bitbucket.org/icl/magmadnn
or clone it using

hg clone https://bitbucket.org/icl/magmadnn

Compiling/Installing: Copy the make.inc file
from make.inc-examples/to MDNN’s root,
change any necessary settings in make.inc and
then run

sudo make install

Testing: You should now be able to run the
below command

make testing && cd testing && sh run_tests.sh

this will run the default testers for the
MagmaDNN package.
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Hyperparameter optimization

openDIEL is designed to scaling compute and
data intensive applications

v www.bitbucket.org/cfdl/opendiel

v An open source light weight parallel workflow
framework designed to scale and run inter-disciplinary
simulations on large-scale heterogeneous HPC
platforms.

v Schedule and run a collection of user’s codes (scripts,
serial, and parallel programs) under a single MPI
executable, similar to swift-T, is ideal for combining
compute-intensive and data-driven applications

v" Provide two communication interfaces, a direct one to
one communicator and a asynchronous tuple space
communicator, for exchanging data among different
programs.

v Show workflows for materials sciences and climate
applications

OpenDIEL architecture:
(A) GUI launcher creates a configuration file for the workflow,
and executive will read this file to set up workflows;
(B) After initial configuration, executive starts all modules;
(C) The modules have access to the communication library, and
directly communicate or utilize tuple-space communication.

Configuration File <—®—> GUI Launcher

l Executive

[ Tuple Space | !

1' Direct Comm | ‘ |
v / . Comm | .
®\ 7 "

A T T T

rocessing Data Library ips
and I/O Analyzer Sclence and Tool L
Modules Space
Module Module Modules | Module |
A A T A A | meUNIVERSITYof
@ ------------------------- " | TENNESSEE
\ ’ Department of Electrical Engineering
B e L L L Modules-----------------cuuon-- ’

and Computer Science



MagmaDNN training performance (single V100 GPU)

70

MLP Time Comparison on MNIST

—— MagmaDNN
TensorFlow

——  PyTorch
~Theano GPU
—+Theano CPU

LA

Layers

10 12 14

Data: 60,000 images, 28x28 pixels each

Parameter/Setting Value

Name

GPU Nvidia 1050 Ti

CPU Intel Xeon X5650 @
2.67GHz x 12

0S Ubuntu 16.04 LTS

Epochs )

Batch Size 100

Learning Rate 0.2

Weight Decay 0.001

#Hidden Units 598

Layer
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MagmaDNN scalability and SGD speedup

Asynchronous Stochastic Gradient Descent

Asynchronous SGD compared to the classical synchronous SGD:
A Little to no synchronization or locking mechanism = better scalability

V¥ Delayed gradient update = slower convergence.

Examples of ASGD algorithms:
e Shared-memory architectures: Hogwild!. Speedup vs. TensorFlow

e Distributed-memory architectures: Downpour SGD.

e —— # threads: 2 5
: ¥ threads: 8 o
ASGD In MagmaDNN: 08 : # t:rea:s; E1;6 =] 4 =
—¥— # threads: 32 .8 ASGD Peak
. o
e Master worker: performs SGD 3o A MagmaDNN
iterations on global parameter. 5
e Slave workers: Compute local 0. , Lo O
gradients. g ,

t (s) 1 2 3 4 5 6 7 8
Number of GPUs
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Applications in Materials Science and Microscopy

Using openDIEL to combine DFT, ML, MC on exascale platform

,/'”' \ ' ‘ Optimizer Modules, Grid search Engine
First Principle
| Exascution p=3p  Calculation
i Module A
\'\ //'} Mc
\\\ - . ) Classifier
t —_ Module E
[ ] e DNN on GPU Monte-
Workflow e — Carlo (MC) Carlo (MC)
System — Calculation
Configuration Calculation
Module B , : Module D
File Module D (updating)
Create Module ‘ ‘ — — P 9
A, B,C.DE Metropolis
Specify | ‘ Module F
Workflow group Thermo- ‘ DNN on GPU
and dynamics
dependency Sampling
Module C

Tuple Space Module

Tight coupling of first
principles statistical
mechanics of materials to
calculate the temperature
dependence of materials -
requires the calculations of
many possible atomic
configurations within these
materials using a Monte
Carlo approach, where the
probability of the individual
states would be evaluated
using an expensive density
functional theory calculation.

Train a surrogate model that
can replace the expensive (in
the order of multiple node
hours per data point) first
principles calculation within
the Monte Carlo sampling of
possible configurations.
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Image Compression for Climate Science Simulation

Workflow to perform in-situ DL training for both compressed and original images

Compression
Method
(JPEG)

e itis possible to train in situ networks
(RNNs) to reduce the error in lossy
compression—obtaining multiple

Simulation Data Lossy Compression with orders of improvement.
Barotropic Instability Reconstruction Artifacts

¢ Going forward, it will be necessary
to further improve in situ
compression and analysis in order
to maximize discovery with HPC
simulations

Minimize Data Movement

and Storage Store Lossy Image

Super
Reconstruction

v NIVERSITYof
icLL>or
INNIOVATIVE TENNESSEE

COMPUTING LABORATORY and Computer Science




MagmaDNN benchmarks and testing examples ...

EEG-Based Control of a Computer Cursor Movement with

TENNESOLE Machine Learning. Part B
~KNOXVILLE Students: Justin Kilmarx (University of Tennessee) , David Saffo (Loyola University),

Lucien Ng (The Chinese University of Hong Kong)
Mentors: Xiaopeng Zhao (UTK), Stanimire Tomov (UTK), Kwai Wong (UTK)

Unmixing 4-D Ptychographic Image:

Brain-'ComputferInterface(BCI RIDGE \‘&:_,“ Pal"t BData ApproaCh ‘
 ent ooy eretveg]  Nedonal Laborstory eniZliws-%8m Student: Zhen Zhang(CUHK), Huanlin Zhou(CUHK), Michaela D. Shoffner(UTK)y

entertainment fields.

Mentors: R. Archibald(ORNL), S. Tomov(UTK), A. Haidar(UTK), K. Wong(UTK)

Instead of using invasive BCI, w

intention by classifying their El m‘
which recorded electrical activ

e JNIVERSITYof

Figure 1: A picture cap

To classify the user indent
signal with high accuracy,
To accelerate the process

TENNESSEE Accelerating FFT with half-precision floating point
art machine learning technolo There are three kni KNOXVILLE
advanced prosthetic devices cj which is a 2688 by 2¢ hardware on G P U
patients can be benefited from] input image [, we tr OAK NATIONAL INSTITUTE Of
three basic modes. It RIDGE TIRUCHIRAPALLL 1NDIA Anumeena Sorna (NITT) & Xiaohe Cheng (HKUST)

National Laboratory

closely represented g
basic modes, namely

Mentor: Eduardo D’Azevedo (ORNL) & Kwai Wong (UTK)

=

The problem can € _

method. However, th
away from what we d
images , where the tr|

OAK e UNIVERSITYof
we present L RIDGE TENNESSEE

computing the KNOXVILLE
Processing Ur
using half pre
core hardwar
Fourier Transi|

watiaell _______ Abstract |
recombining AbStraCt

algorithm is w Convolutional Neural Networks are extremely useful in computer vision —
network is (0.9994, —( we hope to f| and many other related fields, but the computation of them tends to be - :
nodes in each hidden specific compi|] extremely expensive in many cases. The aim of this research project is to i

0.01. _ accelerate Convolutional Neural Networks, while it is divided into two
directions:

Discrete Fouri] e To design a machine-learning back-end on GPU using the MAGMA
The DFT conve library to using efficient algorithms;
signals accord] ® To analyze the performance of various machine learning back-ends.

Architectures
Students: Alex Gessinger(SRU), Sihan Chen(CUHK)

i ————
National Laboratory

FOI’ (al ‘87"/) = (17 _1!
(0.9426, —0.3582, —0.35

A machine learning
to achieve better acci

, ith (0, 8.1 . : .
an image with (a. 8,7, A simple illustration on how to scatter

e an input image with C channels. We
divide it into T tiles (with overlap) of S
elements.

Design and Acceleration of Machine-Learning back-ends on modern

Mentors: Dr. Stanimire Tomov(UTK), Dr. Kwai Wong(UTK)
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Current work and Future directions

- Development in Al software and tools that scale well on Exascale systems is important, and even more critical
for Al frameworks that also work well across the existing spectrum of exascale applications

Performance portability and unified support on GPUs/CPUs
— C++ templates w/ polymorphic approach;
— Parallel programming model based on CUDA, OpenMP task scheduling, and MAGMA APls.
— Shows potential; still lacks the arsenal of features present in other popular frameworks

Hyperparameter optimization
— Critical for performance to provide optimizations that are application-specific;
— Alot of work has been done (on certain BLAS kernels and the approach) but still need a simple framework to handle the entire library;
— Current hyperparameter optimization tool must be further extended in functionalities
— Add visualization and OpenDIEL to support ease of GPU deployment over large scale heterogeneous systems

Extend functionality, kernel designs, and algorithmic variants
— BLAS, Batched BLAS, architecture and energy-aware
— New algorithms and building blocks, architecture and energy-aware
— Distribution strategies and (asynchronous) techniques for training DNN on large scale systems

Use and integration with applications of interest
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