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Needed in a wide variety of domain sciences 
Can power ML and data analytics too:  

•  Linear systems:               Solve Ax  = b 
•  Computational electromagnetics, material science, applications using  

boundary integral equations, airflow past wings, fluid flow around ship  
and other offshore constructions, and many more 

•  Least squares:                  Find x to minimize || Ax – b ||  
•  Computational statistics (e.g., linear least squares or ordinary least squares),  

econometrics, control theory,  signal processing, curve fitting,  and many more 

•  Eigenproblems:                Solve Ax = λ x 
•  Computational chemistry, quantum mechanics, material science, face recognition,  

PCA, data-mining, marketing, Google Page Rank, spectral clustering, vibrational  
analysis, compression, and many more 

•  SVD:                                    A = U Σ V* (Au = σv and A*v = σu) 
•  Information retrieval, web search, signal processing, big data analytics, low rank  

matrix approximation, total least squares minimization, pseudo-inverse, and many more 

•  Many variations depending on structure of A 
•  A can be symmetric, positive definite, tridiagonal, Hessenberg, banded,  

sparse with dense blocks, etc. 

•  DLA is crucial to the development of sparse solvers 

Dense Linear Algebra 



High-performance LA for modern architectures 

•  Leverage latest numerical  
algorithms and building blocks  
MAGMA, PLASMA, SLATE (DOE funded) , 
MAGMA Sparse, POMPEI project*  
 

•  Polymorphic approach 
Use MAGMA sub-packages for various  
architectures; 
Provide portability through single  
templated sources using C++ 

•  Programming model 
BLAS tasking + scheduling 
 

•  Open standards 
OpenMP4 tasking + MPI 

Software/Algorithms follow hardware evolution in time 

LINPACK (70’s) 

(Vector operations) 

Rely on  

   - Level-1 BLAS 

operations 

LAPACK (80’s) 

(Blocking, cache 

friendly) 

Rely on  

   - Level-3 BLAS 

operations 

ScaLAPACK (90’s) 

(Distributed Memory) 

Rely on  

   - PBLAS Mess Passing 

PLASMA (00’s) 

New Algorithms  

(many-core friendly) 

Rely on  

   - a DAG/scheduler 

   - block data layout 

   - some extra kernels 
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 MAGMA 
 Hybrid Algorithms 
 (heterogeneity friendly)  

Level 1 BLAS 

Level 3 BLAS 

PBLAS 
 BLAS on tiles + 
DAG scheduling 

BLAS tasking + 
( CPU / GPU / Xeon Phi ) 
hybrid scheduling 

Use of BLAS for portability 

Use of BLAS is in the heart of ML performance and portability too! 



Nvidia P100 
The theoretical peak double precision is 4700 Gflop/s 
CUDA version 8.0 

HPC software design – use Level 3 BLAS 
Nvidia P100, 1.19 GHz, Peak DP = 4700 Gflop/s  

Matrix size (N), vector size (NxN)
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What other LA is needed for Data Analytics? 

•  Traditional libraries like MAGMA can be used as backend to accelerate the LA computations 
in data analytics applications 

•  Need support for  
1) New data layouts,  2)  Acceleration for small matrix computations, 3) Data analytics tools  

Need data processing and analysis support for  
Data that is multidimensional / relational 

Small matrices, tensors, and batched 
computations 

Fixed-size 
batches 
 
Variable-size 
batches 
 
Dynamic batches 
 
Tensors 



Data Analytics and LA on many small matrices 
(Batched LA) 

Data Analytics and associated with it Linear Algebra on small LA 
problems are needed in many applications: 
 
 
 
 
 

•  Machine learning, 
•  Data mining, 
•  High-order FEM,  
•  Numerical LA, 
•  Graph analysis, 

•  Neuroscience, 
•  Astrophysics, 
•  Quantum chemistry, 
•  Multi-physics problems, 
•  Signal processing, etc. 

 

Filters F 
Fn 

    Output On 

n,kO

n,kO = k,iD
i
∑ n,iF

Dk . 
Convolution                Pooling        Convolution           Pooling           Fully                      Output 

      connected               predictions  Data D 

Convolution of Filters Fi (feature detection) and input image D: 
•  For every filter Fn and every channel, the computation for 

every pixel value On,k  is a tensor contraction: 

 
•  Plenty of parallelism; small operations that must be batched 
•  With data “reshape” the computation can be transformed into  

a batched GEMM (for efficiency; among other approaches) 

chicken 0.4 
boat 0.3   

person 0.1 
dog 0.01 

Batched LAPACK 
Sparse / Dense Matrix 

System 

Single calls to  
Batched BLAS 

DAG-based factorization 

•  Matrix-free basis evaluation needs efficient tensor contractions,  
 
  

•  Within ECP CEED Project, designed MAGMA batched methods  
to split the computation in many small high-intensity GEMMs, 
grouped together (batched) for efficient execution: 
  

      Batch_{ Ci3 = AT Bi3, for range of i3 } 

i1,i2,i3C = k,i1A k,i2,i3B
k
∑

Machine learning Applications using high-order FEM 

Sparse/Dense solvers & preconditioners  



Programming model: BLAS + scheduling 
ML also construct compute graphs and schedule execution 
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Main Classes of Algorithms in MAGMA 

•  Hybrid algorithms 
•  Use both CPUs and GPUs 

•  GPU-only algorithms 
•  Entirely GPU code 



Main Classes of Algorithms in MAGMA 

•  Hybrid algorithms 
•  Use both CPUs and GPUs 

•  GPU-only algorithms 
•  Entirely GPU code 

•  Out-of-GPU memory algorithms 
•  LA that is too large to fit into the main CPU/GPU memory 

A. Haidar, K. Kabir, D. Fayad, S. Tomov, and J. Dongarra, “Out of Memory SVD  
Solver for Big Data”, IEEE HPEC, September, 2017. 
 
Yuechao Lu, et al. on out-of-GPU memory GEMMs in RSVD, TASMANIAN, etc. 
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Main Classes of Algorithms in MAGMA 

•  Hybrid algorithms 
•  Use both CPUs and GPUs 

•  GPU-only algorithms 
•  Entirely GPU code 

•  Out-of-GPU memory algorithms 
•  LA that is too large to fit into the main CPU/GPU memory 

•  Mixed-precision LA 
•  Use new hardware features, e.g., Tensor Cores 

A. Haidar, P. Wu, S. Tomov, and J. Dongarra,  “Investigating half precision  
arithmetic to accelerate dense linear system solvers”, SC’17 ScalA17  
workshop, November 2017. 
 
A. Haidar, S. Tomov, and J. Dongarra,  and N. Higham, “Harnesing GPU Tensor  
Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative  
Refinement Solvers”, SC’18 (accepted), November 2018. 
 
Posters (GTC’18 2nd place, ISC’18 1st place; 11K downloads in a month) 
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Main Classes of Algorithms in MAGMA 

•  Hybrid algorithms 
•  Use both CPUs and GPUs 

•  GPU-only algorithms 
•  Entirely GPU code 

•  Out-of-GPU memory algorithms 
•  LA that is too large to fit into the main CPU/GPU memory 

•  Mixed-precision LA 
•  Use new hardware features, e.g., Tensor Cores 

•  Energy efficient  
•  Build energy awareness and tradeoff with performance 
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Main Classes of Algorithms in MAGMA 

•  Hybrid algorithms 
•  Use both CPUs and GPUs 

•  GPU-only algorithms 
•  Entirely GPU code 

•  Out-of-GPU memory algorithms 
•  LA that is too large to fit into the main CPU/GPU memory 

•  Mixed-precision LA 
•  Use new hardware features, e.g., Tensor Cores 

•  Energy efficient  
•  Build energy awareness and tradeoff with performance 

•  Batched LA 
•  LA on many small matrices 



Main Classes of Algorithms in MAGMA 

•  Hybrid algorithms 
•  Use both CPUs and GPUs 

•  GPU-only algorithms 
•  Entirely GPU code 

•  Out-of-GPU memory algorithms 
•  LA that is too large to fit into the main CPU/GPU memory 

•  Mixed-precision LA 
•  Use new hardware features, e.g., Tensor Cores 

•  Energy efficient  
•  Build energy awareness and tradeoff with performance 

•  Batched LA 
•  LA on many small matrices 

•  FFT 
•  FFTs, convolutions, auxiliary routines (transposes, matricizations, etc.) 
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 AI, ML, NN, DNN, data analytics 

ü  Ar,ficial	
  Intelligence	
  (AI):	
  science	
  and	
  	
  engineering	
  of	
  making	
  intelligent	
  machines	
  to	
  perform	
  the	
  human	
  tasks	
  (John	
  
McCarthy,1956).	
  AI	
  applicaMons	
  is	
  ubiquitous.	
  	
  

ü  Machine	
  learning	
  (ML)	
  :	
  A	
  field	
  of	
  study	
  that	
  gives	
  computers	
  the	
  ability	
  to	
  learn	
  without	
  being	
  explicitly	
  programmed	
  
(Arthur	
  Samuel,	
  1959).	
  	
  A	
  computer	
  program	
  is	
  said	
  to	
  learn	
  from	
  experience	
  E	
  with	
  respect	
  to	
  some	
  task	
  T	
  and	
  some	
  
performance	
  measure	
  P,	
  if	
  its	
  performance	
  on	
  T,	
  as	
  measured	
  by	
  P,	
  improves	
  with	
  experience	
  E	
  (Tom	
  Mitchell,1998).	
  	
  

ü  Neural	
  Network	
  (NN)	
  :	
  Neural	
  Network	
  modeling,	
  a	
  subfield	
  of	
  ML	
  is	
  algorithm	
  inspired	
  by	
  structure	
  and	
  funcMons	
  of	
  
biological	
  neural	
  nets	
  	
  

ü  Deep	
  Neural	
  Network	
  (DNN)	
  :	
  	
  (aka	
  deep	
  learning):	
  an	
  extension	
  of	
  NN	
  composed	
  of	
  many	
  layers	
  of	
  funcMonal	
  
neurons,	
  is	
  dominaMng	
  the	
  science	
  of	
  modern	
  AI	
  applicaMons	
  

ü  Supervised	
  Learning	
  (SL)	
  :	
  A	
  class	
  in	
  ML,	
  dataset	
  has	
  labeled	
  values,	
  use	
  to	
  predict	
  output	
  values	
  associated	
  with	
  new	
  
input	
  values.	
  

Deep  
Neural Network 

Many engineering problems can be solved using data-driven AI-based simulations 



How to build a NN 

ü  Define	
  a	
  NN	
  to	
  compute	
  predicMons	
  f(w,b,x)	
  as	
  funcMon	
  of	
  w,	
  b,	
  and	
  data	
  x	
  
ü  A	
  node	
  in	
  the	
  neural	
  network	
  is	
  a	
  mathemaMcal	
  funcMon	
  or	
  acMvaMon	
  funcMon	
  which	
  

maps	
  input	
  to	
  output	
  values.	
  	
  
ü  Weights	
  (w	
  =	
  w	
  –	
  λ	
  ∇C	
  )	
  and	
  bias	
  (b)	
  are	
  the	
  sets	
  of	
  parameters	
  to	
  be	
  determined	
  
ü  Many	
  nodes	
  form	
  a	
  neural	
  layer,	
  links	
  connect	
  layers	
  together,	
  defining	
  a	
  NN	
  model	
  
ü  AcMvaMon	
  funcMon	
  (	
  σ	
  ),	
  is	
  generally	
  a	
  nonlinear	
  data	
  operator	
  which	
  faciltates	
  

idenMficaMon	
  of	
  complex	
  features.	
  

C(w,b) ≡ 1
2n

|| y(x)− f (w,b, x) ||2
x
∑

ü  Define	
  a	
  cost/loss	
  func5on	
  C,	
  e.g.,	
  the	
  mean	
  squared	
  error	
  (MSE).	
  
ü  Minimize	
  C(w,b)	
  as	
  a	
  funcMon	
  of	
  the	
  weights	
  (w)	
  and	
  biases	
  (b),	
  casMng	
  it	
  as	
  an	
  

opMmizaMon	
  problem	
  using	
  the	
  gradient	
  descent	
  algorithm.	
  	
  

ü  To compute the gradient ∇C we need to compute the gradients ∇Cx separately for each training input, x, and then average them,  
    ∇C = 1/n ∑∇Cx. Unfortunately, when the number of training inputs is very large this can take a long time, and learning thus occurs slowly. 
ü  A way is to use stochastic gradient descent to speed up learning. The idea is to estimate the gradient ∇C by computing a small sample  
    of randomly chosen training inputs,  refer to as a mini-batch of input (mini-batched SGD). 
ü  By averaging over this small sample it turns out that we can quickly get a good estimate of the true gradient ∇C, and this helps speed up 
    gradient descent, and thus learning. 
ü  Another randomly chosen mini-batch are selected and trained, until all the exhausted the training inputs are used. It is said to complete an 
    epoch (iteration) of training, then more iteration. 



How to build a NN 
•  There are many parameters determining a NN and possible applications 

–  How many layers, what type of layers, sizes, connectivity, what computation graph,  
activations functions, etc. (model hyperparameters) 

–  Algorithm hyperparameters – related to training, like learning rate, mini-batch, etc. 

•  Examples of different NNs and applications 
–  Multilayer Perceptron (MLP) and Convolutional NNs (CNNs) 

have ”regular (steady) input and output” (feedforward/no cycles) 
Mainly used for regression and image classification 

–  Recurrent Neural Networks (RNNs) 
have “time (step) dependent varying size of input” and “irregular” output 
Used in speech, text, image, video recognition/classification 

–  Generative Adversarial Networks (GANs) 
have a pair of NNs gaming against each other – learning to  
generate new data with the same statistics as the training set 
Used in unsupervised learning, semi-supervised learning,  
fully supervised learning, and reinforcement learning. 

–  Reinforcement Learning 
Software agents take actions in order to maximize the notion of  
cumulative reward 
Used in robot control, elevator scheduling, telecommunications,  
backgammon, checkers and Go 

–  ... 

•  Networks become more complicated, DNNs 
 

RNN#



LA Operations in DNNs 
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•  Matrix-matrix (GEMM) multiplications  
For performance computations must be organized in terms of GEMMs: 



LA Operations in DNNs 
•  Matrix-matrix (GEMM) multiplications 

For performance computations must be organized in terms of GEMMs 
•  LA can be sparse, or dense, low-rank matrices, etc. 
•  Batched LA 
•  Convolutions in Convolutional NNs (CNNs), with various ways to compute 

–  Directly using batched LA 
–  Batched GEMMs 
–  FFTs – convolutions f * g of images f and filers g can be accelerated through FFT,  

as shown by the following equality, consequence of the convolution theorem: 
 
         f * g = FFT-1 [ FFT( f ) .* FFT( g ) ], 
 
where .* is the Hadamard (component-wise) product, following the ‘.*’ Matlab notation 

–  Winograd  
•  Use of multi and mixed-precision calculations 



MagmaDNN 

Vendor 
Libraries 

Run-time/ 
comm. APIs 

LA 
libraries 

Standard 
LA APIs 

  MAGMA Templates 

BLAS API LAPACK API Batched BLAS API 

MPI OpenMP MKL ESSL cuBLAS ACML 

MAGMA (dense) MAGMA Batched MAGMA Sparse 
  SLATE 

Single Heterogeneous Node 

Shared memory 

ScaLAPACK API 

Scalable LA on new architectures 
   Data abstractions and APIs  
   Heterogeneous systems portability 

Tile algorithms 
    LAPACK++ 
    BLAS++ 

MagmaDNN 
High-performance data analytics  
and machine learning for many- 

core CPUs and GPU accelerators 

Applications •  MagmaDNN is HP Data Analytics 
and ML framework built around 
the MAGMA libraries aimed at 
providing a modularized and 
efficient tool for training DNNs.  

•  MagmaDNN makes use of the 
highly optimized MAGMA libraries 
giving significant speed boosts 
over other modern frameworks. 
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Scaling ML AI + HPC simulations to Exascale 
●  A position paper addressing challenges in  

integrating ML & traditional compute-intensive HPC simulations 
 
R. Archibald, E. Chow, E. D'Azevedo, J. Dongarra, M. Eisenbach, R. Febbo, F. Lopez, D. Nichols, S. Tomov, K. Wong, J. Yin,  
“Integrating Deep Learning in Domain Sciences at Exascale”,  
Smokey Mountains Computational Sciences and Engineering Conference (SMC’2020), Aug. 26-28, 2020. (available at arXiv: 2011.11188) 
 

●  Many ML/DL frameworks (TensorFlow, PyTorch, MxNet, etc.) 
 - developed by industry;  
 - often targeting cloud environments for data-driven applications;  
 - they are not necessarily suitable for scaling HPC simulations on large-scale supercomputers 
 

●  To address the issues, we build a software infrastructure specifically for integrating ML and HPC 
simulations on petsscale to exascale heterogeneous systems: DNN + Workflow 

 
1)  Build a new C++ modular DNN framework, MagmaDNN, which is based on the LA software,  

MAGMA, for portability and scalability 
2)  Provide a parallel workflow system to run combinations of ML & HPC codes 
3)  Introduce algorithms for scheduling, auto tuning based and asynchronous solvers 
4)  Discuss two DOE applications, materials science and climate data compression 



Load Data 

Preprocessing 

Create/Load Model 

Train Model 

Predict Export Model 

Design process 

●  Similar to TF or PyTorch 
●  MagmaDNN is designed/

optimized with this training 
paradigm in mind.  
However, it is customizable. 



●  Load Data: Read-in any CSV, image, or other file 
necessary for training. 

●  Preprocessing: Shape data and store in tensors. 

●  Create/Load Model: Restore a saved model or create 
a new one using MagmaDNN’s Model class. Set 
hyperparameters. 

●  Train Model: Fit the network using SGD. 

●  Predict: Use the fitted weights to predict class based 
on new input. 

●  Export Model: Save model to be used again. 

 

Load Data 

Preprocessing 

Create/Load Model 

Train Model 

Predict Export Model 

Workflow 



Neural Network Ideas 

Neural Networks are typically composed of layers 
of linear transformations wrapped by activation 
functions. The network is represented by some 
function f. 

After optimizing some loss criterion w.r.t. the 
parameters of f, the function (or “network”) 
becomes an accurate predictor of highly 
abstracted data. 

Other common, more complicated network types 
exist: CNN, RNN, GANs, Belief Networks, 
Boltzmann 

 



Neural Network Ideas (cont.) 

-  Layers 
-  Neural Networks are comprised of 

several layers put together. 
-  Available Layers: 

-  Input, Output (first and last layers of 
the network) 

-  Fully Connected (dense, linear 
transformation) 

-  Activation (activation function) 
-  Conv2D, Pooling2D (convolutional 

layer) 

Input Layer 

Fully Connected (FC) 
Layer 

Activation Layer (i.e 
RELU, sigmoid…) 

Convolution2D Layer 

Pooling2D Layer 

Output Layer 



Compute Graph 
sigmoid 

+ 

b matmul 

W x 

-  All operations/math are put into 
a compute graph.  

-  Non-Eager 
-  Gradient Support, Grad Tables 



Operations & Compute Graphs 

All Tensor operations are wrapped in an Operation class, which is used in the 
compute graph. Operations also provide a modular interface for creating and 
manipulating Tensors. They are created as shown: 

Operation<float> *var = op::var<float> ("Var Name", {5, 4}, {GLOROT, {0.5, 0.2}}, HOST); 

 
Var creates and 

returns a new variable  Tensor shape Tensor initializer. Options 
are: GLOROT, UNIFORM, 
CONSTANT, ZERO, ONE, 

DIAGONAL, IDENTITY, 
NONE 

Tensor memory type. 
Options are: HOST, 

DEVICE, MANAGED, 
CUDA_MANAGED 



Operations & Compute Graphs (cont.) 

Variables are Operations that wrap around Tensors. Operations are also used 
for representing some math operation in the computational graph. For example: 

Operation<float> *result = op::add(op::matmul(A, x), b); 

Tensor<float> *result_tensor = result->eval(); 

 

This constructs a compute graph and eval() evaluates it into a Tensor. Available 

operations are: Variable, Tanh, Sigmoid, Add, and Matmul. Since all of these are 

inherited from Operation, it is simple to create/add new operations. 
 

 
 



Operations & Compute Graph (Full Example) 

auto A = op::var<float> ("A", {4, 5}, {GLOROT, {1.5, 2.0}}, MANAGED); 

auto X = op::var<float> ("X", {5, 4}, {UNIFORM, {0.0, 1.0}}, MANAGED); 

auto B = op::var<float> ("B", {4, 4}, {DIAGONAL, {1, 2, 3, 4}}, MANAGED); 

 

/* compute some math operations */ 

auto result = op::add(op::matmul(A, X), B); 

Tensor<float> *result_tensor = result->eval(); 

 

/* use results .... */ 

delete result;  /* only need to delete head of tree */ 

delete result_tensor; 
 



Memory Manager 

-  Core Memory Kernel 
-  4 memory types: 

-  HOST (cpu memory) 
-  DEVICE (gpu memory) 
-  MANAGED (internal managed) 
-  CUDA_MANAGED (cuda managed) 

-  Supports interactions between all 
memory types 

-  Managed memory types must be 
synced! 



Tensors 

Data with multiple axes. 

Everything in MagmaDNN uses tensors. 



Layers 

Layers are a set of weights/biases and put a forward-prop function on the 
compute graph. For instance: 

layer::FullyConnectedLayer<float> *fc = layer::fullyconnected(input->out(), n_units); 

 

This creates a weight, w, and bias, b, tensor and puts [W*input->out() + b] onto 
the head of the compute graph defined by input->out().  

 



Layers (Full Example) 

auto data = op::var<float> ("data", {n_batches, size}, {UNIFORM, {-1.0, 1.0}}, DEVICE); 

   

auto input = layer::input(data); 

auto fc1 = layer::fullyconnected(input->out(), n_hidden_units); 

auto act1 = layer::activation(fc1->out(), layer::TANH); 

auto fc2 = layer::fullyconnected(act1->out(), n_output_classes); 

auto act2 = layer::activation(fc2->out(), layer::SIGMOID); 

auto output = layer::output(fc2->out()); 

 

Tensor<float> *forward_prop_result = output->out()->eval(); 

 



Training (example) 

Tensor<float> data  ({60000, 785}, HOST); 

io::read_csv_to_tensor(data, "mnist_data_set.csv"); 

 

std::vector<Layer<float>> layers_vector; 

/* Create Layers in Here as Shown Before... */ 

 

Optimizer<float> optimizer = optimizer::DistributedGradientDescentOptimizer(0.05); 

Model<float> model (layers_vector, optimizer, batch_size); 

model.fit(data, n_epochs); 
 



Distributed Training 
-  Many node training 
-  Averages gradients 
-  Implemented many strategies and optimizations (using CUDA-aware MPI) 

MPI_Allreduce Asynchronous 
training 

Master-worker reduce                            Ring Allreduce 



Accelerating CNNs in MagmaDNN with FFT 

Ø  Convolutions Di,c * Gk,c of images Di,c and filers Gk,c can be accelerated through FFT,  
as shown by the following equality, consequence of the convolution theorem: 
 
         Di,c * Gk,c = FFT-1 [ FFT(Di,c) .* FFT(Gk,c) ], 
 
where .* is the Hadamard (component-wise) product, following the ‘.*’ Matlab notation 
 

 
Ø  Developed mixed-precision (FP16-FP32) FFT using the GPU’s Tensor Cores (TC) acceleration  

Ø  Dynamic splitting to increase the FP16 accuracy, while using high-performance TC 
  

     XFP32(:) = s1 X1FP16(:)  + s2 X2FP16(:)  
  
     [X1 X2] = FFT( [ X1 X2]   in FP16+ (e.g., go to radix 4, where the FFT matrix is exact in FP16) 
 
     FFT ( X ) ≈ s1 X1 + s2 X2  



Reduced and Mixed Precision :   
scaling performance on new hardware   
 

ü  Recursive Radix-4 or Radix-8 FFT 
implemented as batched  matrix 
multiplication on tensor cores 
 

ü  4x4 Fourier matrices are exactly 
representable in FP16, rational 
approximation for 8x8 Fourier matrices 
 

ü   2D FFT and 3D FFT implemented as 
batched 1D FFT 
 

ü  This approach has much higher accuracy 
compared to FFT of FP16 
 

ü   Key step is expressing vector in FP32 as scaled sum 
of FP16 vectors 

ü  x_fp32(:) = s1_fp32 * x1_fp16(:) + s2_fp32 * x2_fp16(:) 

Enhance performance for large scale image 
data applications   



Accuracy of the  
mixed-precision 
(FP16-FP32)  
FFT 

Reference:  
X. Cheng, A. Sorna , Ed D’Azevedo, K. Wong, S. Tomov, "Accelerating 
2D FFT: Exploit GPU Tensor Cores through Mixed-Precision," The 
International Conference for High Performance Computing, Networking, 
Storage, and Analysis (SC'18), ACM Student Research Poster,  Dallas, 
TX, November 11-16, 2018.  
 
https://icl.utk.edu/projectsfiles/magma/pubs/77-mixed-precision-FFT.pdf 
https://www.jics.utk.edu/recsem-reu/recsem18 
 



Accelerating CNNs with Winograd’s minimal filtering algorithm 

Ø  FFT Convolution is fast for large filters;  
Typical filters are small, e.g., 3x3, where Winograds’s  
algorithm has been successful;  
In 2D, convolution of tile D of size 4x4 with  
filter F of size 3x3 is computed as  
 
         D * F = AT [ [ G D GT] .* [BT D B] ] A 
 
where B, G, and A are given on the right: 
 

 
Ø  Computing for a number of filters, sliding the tile over a batch of images, each with a number of 

channels, can be expressed as batched gemms, e.g.,  
batch  m  n  k          (sizes coming from VGG-16 CONVOLUTION LAYERS) 
16x64  12544  64  3 
16x64  12544  64  64 
16x16  12544  128  64 
16x16  12544  128  128 
… 



Install and Build 

Dependencies:  

-  Cuda (>9.0) 
-  CuDNN (>6.0) 
-  Magma (>2.3.0) (>2.5.0 for half-precision) 

Download MagmaDNN from 
https://bitbucket.org/icl/magmadnn  
or clone it using 

hg clone https://bitbucket.org/icl/magmadnn 

 

Compiling/Installing: Copy the make.inc file 
from make.inc-examples/ to MDNN’s root, 
change any necessary settings in make.inc and 
then run 

sudo make install 

Testing: You should now be able to run the 
below command 

make testing && cd testing && sh run_tests.sh 

this will run the default testers for the 
MagmaDNN package. 

 



Hyperparameter optimization 
OpenDIEL architecture:  
    (A) GUI launcher creates a configuration file for the  workflow,    
           and executive will read this file to set up workflows;  
    (B) After initial configuration, executive starts all modules;  
    (C) The modules have access to the communication library, and 
          directly communicate or utilize tuple-space communication. 

openDIEL is designed to scaling compute and  
data intensive applications  

ü  www.bitbucket.org/cfdl/opendiel	
  

ü  An	
  open	
  source	
  light	
  weight	
  parallel	
  workflow	
  
framework	
  designed	
  to	
  scale	
  and	
  run	
  inter-­‐disciplinary	
  
simulaMons	
  on	
  large-­‐scale	
  heterogeneous	
  HPC	
  
pla`orms.	
  	
  

ü  Schedule	
  and	
  run	
  a	
  collecMon	
  of	
  user’s	
  codes	
  (scripts,	
  
serial,	
  and	
  parallel	
  programs)	
  under	
  a	
  single	
  MPI	
  
executable,	
  similar	
  to	
  swib-­‐T,	
  is	
  ideal	
  for	
  combining	
  
compute-­‐intensive	
  and	
  data-­‐driven	
  applicaMons	
  

ü  Provide	
  two	
  communicaMon	
  interfaces,	
  a	
  direct	
  one	
  to	
  
one	
  communicator	
  and	
  a	
  asynchronous	
  tuple	
  space	
  
communicator,	
  for	
  exchanging	
  data	
  among	
  different	
  
programs.	
  

ü  Show	
  workflows	
  for	
  materials	
  sciences	
  and	
  climate	
  
applicaMons	
  



MagmaDNN training performance (single V100 GPU) 

Data: 60,000 images, 28x28 pixels each 



MagmaDNN scalability and SGD speedup 
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Applications in Materials Science and Microscopy 
 Using openDIEL to combine DFT, ML, MC on exascale platform  Tight coupling of first 

principles statistical 
mechanics of materials to 
calculate the temperature 
dependence of materials - 
requires the calculations of 
many possible atomic 
configurations within these 
materials using a Monte 
Carlo approach, where the 
probability of the individual 
states would be evaluated 
using an expensive density 
functional theory calculation. 
 
Train a surrogate model that 
can replace the expensive (in 
the order of multiple node 
hours per data point) first 
principles calculation within 
the Monte Carlo sampling of 
possible configurations.  



Image Compression for Climate Science Simulation 
 

Compression	
  
Method	
  
(JPEG)	
  

Simulation Data 
Barotropic Instability 

Lossy Compression with 
Reconstruction Artifacts 

On	
  Node	
  	
  
In	
  Situ	
  Machine	
  

Learning	
  

Store	
  Final	
  
Machine	
  
Learning	
  

Super 
Reconstruction 

Minimize Data Movement 
and Storage Store Lossy Image 

Workflow to perform in-situ DL training for both compressed and original images 

•  it is possible to train in situ networks 
(RNNs) to reduce the error in lossy 
compression—obtaining multiple 
orders of improvement.  
 

•  Going forward, it will be necessary 
to further improve in situ 
compression and analysis in order 
to maximize discovery with HPC 
simulations 



MagmaDNN benchmarks and testing examples … 



Current work and Future directions 
•  Development in AI software and tools that scale well on Exascale systems is important, and even more critical 

for AI frameworks that also work well across the existing spectrum of exascale applications 

•  Performance portability and unified support on GPUs/CPUs 
–  C++ templates w/ polymorphic approach;  
–  Parallel programming model based on CUDA, OpenMP task scheduling, and MAGMA APIs. 
–  Shows potential; still lacks the arsenal of features present in other popular frameworks 

•  Hyperparameter optimization 
–  Critical for performance to provide optimizations that are application-specific; 
–  A lot of work has been done (on certain BLAS kernels and the approach) but still need a simple framework to handle the entire library; 
–  Current hyperparameter optimization tool must be further extended in functionalities  
–  Add visualization and OpenDIEL to support ease of GPU deployment over large scale heterogeneous systems 

•  Extend functionality, kernel designs, and algorithmic variants 
–  BLAS, Batched BLAS, architecture and energy-aware 
–  New algorithms and building blocks, architecture and energy-aware 
–  Distribution strategies and (asynchronous) techniques for training DNN on large scale systems 

•  Use and integration with applications of interest 



Collaborators   
       and Support 

MAGMA team 
http://icl.cs.utk.edu/magma 

PLASMA team 
http://icl.cs.utk.edu/plasma 

Collaborating partners 
University of Tennessee, Knoxville 
LLNL 
ORNL 
ANL 
SANDIA 
University of California, Berkeley 
University of Colorado, Denver 
TAMU 
INRIA, France 
KAUST, Saudi Arabia 
University of Manchester, UK 

CEED: Center for  
Efficient Exascale Discretizations 


