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Abstract

Incomplete factorisation methods can su�er from breakdown in that

they may give zero or negative pivots where an exact factorisation would

show only positive pivots. This breakdown e�ectively prevents the factori-

sation from being used in iterative methods such as Conjugate Gradients.

We give an overview of strategies that have been proposed to prevent this

breakdown, and we touch brie
y on various related issues in incomplete

factorisations.

1 Introduction

For the eÆcient solution of sparse linear systems Au = b by an iterative method,
the choice of a proper preconditioner is crucial. A preconditioner is a matrixM
that approximates A, but for which solving the system Mu = b is computation-
ally cheap. In addition, M itself should be easily constructable.

Since the original coeÆcient matrix A is sparse, people have sought to con-
struct sparse factorisations M = LU � A. The exact LU factorisation of A is
not sparse, so M is constructed by a so-called incomplete factorisation, where
the update

aij  aij � aikakk
�1akj (1)

is executed subject to some decision process.
Ideally, the only question concerning incomplete factorisations would be their

accuracy. For instance, typically the condition number �(A) � h�2 where h is
the mesh width, and one would hope that �(M�1A) is smaller, preferably of
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a lower order than h�2. In practice, however, it is already hard to guarantee
the existence of the factorisation. To begin with, if i = j in equation (1), the
updated value of aii can be zero leading to breakdown in the i-th elimination
step. A negative value of aii is a problem too, since, if A is positive de�nite, we
want M to be so, and consequently all pivots of the incomplete factorisation to
be positive.

Incomplete factorisation methods are well-de�ned for M-matrices, but for
any other type of matrix, even symmetric positive de�nite ones, they can suf-
fer from breakdown of some form or other. A number of remedies have been
proposed, but all su�er from certain disadvantages. We will give in sections 2
and 3 an overview of various factorisation algorithms, and related issues in the
theory of incomplete factorisations.

We do not give any numerical tests in this report since it is mostly concerned
with the theoretical aspects of the methods. For comparative tests of the various
methods we refer the reader to [18].

2 Overview of earlier factorisation algorithms

In this section we will give an overview of several representative methods for
computation of a factorisation1

M = (DM + LM )DM
�1(DM + UM ) (2)

of a matrix
A = DA + LA + UA: (3)

The choice DM = DA, LM = LA, UM = UA gives the SSOR method (sec-
tion 2.2); DM 6= DA, LM = LA, UM = UA is called ILU-D (section 2.3); the
general case DM 6= DA, LM 6= LA, UM 6= UA describes all other incomplete LU
methods.

2.1 Classifying factorisation methods

There are several criteria with which to distinguish incomplete factorisation
methods. We will give a few in this subsection; they are not orthogonal, nor do
they apply to all of the methods presented below.

2.1.1 Algorithmic criteria

As a �rst criterium we consider the dropping strategy for �ll-in elements. This
strategy can be one of the following:

positional There is a set S � N2 of matrix positions in which we don't allow
�ll-in, no matter its numerical value. This set can be determined prior to
starting the algorithm, or it can be constructed adaptively. A common

1There is more than one mathematically equivalent way to write a factorisation; we choose
the form (2) to bring out the symmetry, even though it is not computationally optimal.
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choice is for S to comprise all zero positions of A. This method has the
advantage that storage requirements of the incomplete factorisation are
predictable.

numerical We apply some test to �ll-in values, and anything falling under the
threshold is dropped; elements of suÆcient magnitude are accepted. This
method has indeterminate storage requirements (see [4] for a discussion
on how to limit the storage by modifying the threshold parameter), but it
is likely to be more accurate than the positional dropping strategy.

2.1.2 Pivot repair

A further algorithmic issue to consider is how the method deals with zero or
negative pivots, should they occur.

The existence question of incomplete LU factorisations was fully solved
in [34] for the case of M-matrices2. This paper and subsequent generalisations
such as [1] established that for M-matrices �ll-in can be totally or partially ig-
nored, while the M-matrix property is preserved for the remaining submatrix.
As a result, all pivots are guaranteed to be positive and no repair strategy is
needed.

For other matrices than M-matrices, even for symmetric positive de�nite
ones, an incomplete factorisation can fail in the sense that pivots can become
zero or negative. Kershaw [30] gave the following example:

0
B@

3 �2 0 2
�2 3 �2 0
0 �2 3 �2
2 0 �2 3

1
CA

which is positive de�nite, but will have a negative fourth pivot in an ILU(0)
factorisation.

There are the two choices to preventing breakdown: one can adopt an ad-hoc
strategy to copy with non-positive pivots when they arise, or the factorisation
method can be designed in such a way that no breakdown will even occur. We
will see examples of both strategies.

2.1.3 Order reduction: modi�ed methods

Next, incomplete factorisations can be distinguished by the fact that they try
to preserve spectral properties of the coeÆcient matrix in the preconditioner
matrix. While the original matrix satis�es �(A) = O(h�2), simply dropping
elements will lead to �(M) = O(1), and consequently �(M�1A) will be of the
same order as �(A). However, the constant of proportionality may be substan-
tially lowered.

2There are several equivalent de�nitions of an M-matrix. For our purpose, the most con-
venient one is that A is an M-matrix if it is positive de�nite and has nonpositive o�-diagonal
elements. It follows that an M-matrix has positive diagonal elements.
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In order to estimate the condition of the preconditioned system, one can use
the estimate based on the error matrix R =M �A (see [6])

�(M�1A) � !�[1 + kA�1kkRk]
where A and C are symmetric positive de�nite, and

!� = minf!: (2� !�1)DM �DA is SPDg;
(see equations (3) and (2) for the de�nition of DA and DM .) The value of !�

is typically O(1): for the ILU factorisation of the central di�erence Laplace
problem it is

p
2.

The so-called modi�ed incomplete factorisation methods aim at lowering the
order of the precoditioned system. In their simplest form they replace the
conditional execution of (1) by

if �ll is ignored in (i; j) position, aii  aii � aikakk
�1akj (4)

This is commonly referred to as `moving �ll to the diagonal', and it can lead to
a condition number of lower order; see section 2.6.2 for more details. Another
interpretation of modi�ed methods is that they force Av =Mv for some positive
vector v.

2.1.4 Ordering

A �nal criterium to distinguish incomplete factorisation algorithms is the order-
ing strategy of the unknowns.

Symmetric permutations PAP t of the coeÆcient matrix could be used to
put o�, or perhaps avoid altogether, problems with zero or negative pivots.
In [47] the authors explore the idea that an incomplete factorisation exists if the
ordering is such that the factorisation is exact. From this they derive a suÆcient
condition on the sparsity patterns of the matrix and the preconditioner.

Incomplete factorisation methods are sensitive to (symmetric) permutations
of the coeÆcient matrix. Thus, orderings that increase the parallelism of the
preconditioner solve may incur a larger number of iterations than the same
factorisation algorithm applied to the matrix under the natural ordering. This
was observed in [16] and analysed in [15, 14, 19].

In [13] the ordering was chosen, while keeping the maximum �ll level �xed,
in such a way as to minimise the size of �ll elements.

In the following subsections, we will give an overview of various incomplete
and modi�ed incomplete factorisation algorithms, remarking on their existence
properties and practical behaviour. We will ignore the issue of the in
uence of
the ordering on the existence of the factorisation, and concentrate solely on the
modi�cation strategy.

2.2 SSOR

The Symmetric Successive Over-Relaxation preconditioner is de�ned as the
product (DA + LA)DA

�1(DA + UA), where DA, LA, and UA are the diagonal
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and strict upper and lower triangular parts of the coeÆcient matrix A. Clearly,
constructing this factorisation carries zero cost. At most, one wants to compute
and store DA

�1 explicitly. This factorisation also has the pleasant property
that the question of well-de�nedness of the factorisation is trivially satis�ed3.
Therefore, some people advocate using variants of SSOR as preconditioner for
complicated problems [32].

On the downside, this preconditioner will be less e�ective than incomplete
factorisation methods when the latter exist. Introduction of a relaxation param-
eter can alleviate this [2, Ch. 1], but the calculation of the optimal relaxation
parameter is usually nontrivial.

2.3 Types of ILU factorisations: ILU-D, ILU(0), ILU(r),
ILU(k)

There are various types of ILU methods. In the simplest type, not only is all
�ll-in ignored, but only diagonal nonzero elements of the matrix are ever altered:

if i = j: aij  aij � aikakk
�1akj (5)

This method has the important practical property that the preconditioner largely
re-uses the matrix elements. Practical implications are that only one vector's
worth of elements needs to be stored, and that an eÆcient implementation of
the solution step is possible [22], which combines it with the matrix product,
giving a substantial reduction of the operation count. The name ILU-D for this
factorisation was coined in [40].

Slightly more elaborately, the ILU(0) factorisation ignores all �ll-in, but
allows modi�cation of o�-diagonal nonzeros:

if aij 6= 0: aij  aij � aikakk
�1akj (6)

The storage needed for this factorisation equals that of the original coeÆcient
matrix.

The ILU-D and ILU(0) methods are identical for certain matrices, one com-
mon case being that of the central di�erence operator on a regular grid. More
general, they are identical if there are no triangles in the matrix graph.

In the general case, �ll-in can be accepted or discarded in any position. If a
threshold parameter r is used, for instance as in

if jaij j � raii: aij  aij � aikakk
�1akj ; (7)

we call this a `numerical dropping strategy', and term the method ILU(r).
If the notion of level is applied to �ll-in, the method is called ILU(k):

initially: 8i;j : `ij = 0; (8)

3We will call a factorisation well-de�ned if, when applied to a (symmetric) positive de�nite
matrix, it yields a (symmetric) positive de�nite preconditioner. We will not consider the
inde�nite case in this paper.
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if `ip � k and `pj � k: aij  aij � aipapp
�1apj

if �ll-in and `ij = 0: `ij  1 +minf`ip; `pjg (9)

otherwise: ignore �ll

2.4 Kershaw's method

The breakdown of the incomplete factorisation method can be remedied, as
was suggested by Kershaw [30], by substituting an arbitrary positive value for
zero or negative pivots. While this trivially guarantees the existence of the
factorisation, it is likely to lead to a large condition number for �(M�1A).

Choosing the repair value is not trivial: too small a value will give unstable
recurrences during the solution process [23, 24], so, even while the preconditioner
is SPD, the iterative method may diverge. Overestimates of the optimal repair
value will make the preconditioner too diagonally dominant, in e�ect turning it
into a Jacobi method.

Kershaw's choice for the repair pivot is mkk =
P

j<k jmkj j+
P

j>k jmjkj. A
similar choice mkk =

P
j<k jmkj j+

P
j>k jmkj j. was used by van der Vorst [43]

motivated by considerations of stability; see section 3.5.

2.5 Manteu�el's method

Since the main problem with incomplete factorisation is pivots becoming neg-
ative, it makes sense that adding a suÆcient number to the diagonal of the
matrix will give a well-de�ned factorisation.

Trivially, adding enough to make the matrix diagonally dominant is a suÆ-
cient condition, but this is likely to lead to an ill-conditioned system. Manteuf-
fel [33] proposed to make several attempts at �nding a small enough value of �
such that A+�I has a well-de�ned factorisation M , and which does not give a
too large condition number �(M�1A).

2.6 Modi�ed Incomplete LU

The idea of moving �ll-in to the diagonal (equation 4) has been around in various
forms for a long time. Already in [17] it was shown that this, when combined
with small perturbations (see below), could lower the condition number of the
preconditioned system to O(h�1).

2.6.1 Existence of MILU factorisations

All the conditioning theory for modi�ed methods holds only for symmetric ma-
trices, and the methods are not guaranteed to be well-de�ned for other matrices
than M-matrices. Example: the following is a symmetric positive de�nite matrix
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for which MILU is not spd [4] for some sparsity patterns:

A =

0
B@

1 �1 � ��
�1 (1 + �=2) 0 0
� 0 1 0
�� 0 0 1

1
CA

This matrix is positive de�nite for 0 < � < �1+p2. After one elimination step,
the Schur complement is

A2 =

0
@
�=2 � ��
� 1� �2 �2

�� �2 1� �2

1
A :

Clearly, simply moving the (1; 3) position of the Schur complement to the diag-
onal leads to breakdown of the algorithm.

In fact, even for M-matrices the existence theory is based on �nding a vec-
tor v > 0 such that Mv = Av > 0. Moving �ll-in to the diagonal corresponds
to letting v be the vector e = (1; 1; : : :)t, and typically we only have Ae � 0.
In a �nite element or �nite di�erence context this means that the rows corre-
sponding to interior nodes of the domain have zero rowsums. In such rows the
factorisation can break down. Thus, the MILU factorisation can break down for
symmetric M-matrices; see [20, 36]. The global idea is that modi�ed methods
preserve row sums. Therefore, if a row with zero rowsum is an `endpoint' of the
factorisation (there are no nodes with a higher number connected to it), it will
have a zero pivot.

As an example of this, the matrix

A =

0
@

2 �1 �1
�1 1 0
�1 0 1 + �

1
A

is an M-matrix for any � > 0. However, a modi�ed incomplete factorisation will
give a zero pivot after the �rst elimination step. (Using v = e in the de�nition
of the modi�ed factorisation, we �nd from the Gershgorin circle theorems that
in the incomplete factorisation pivots can not become negative.)

As a heuristic statement, one can say that under the natural ordering MILU
methods do not break down on M-matrices, provided Neuman boundaries of
the domain are not ordered last. When no breakdown occurs, the modi�cation
entails adding a negative semi-de�nite matrix to a principal 2� 2 minor of the
coeÆcient matrix. Since this matrix, call it F , is chosen such that Fv = 0, with
v the positive vector for which Av > 0, this leaves the minor, and consequently
the factorisation, an M-matrix and therefore positive de�nite.

2.6.2 Accuracy of MILU factorisations

Often the �ll is multiplied by a parameter less than 1 before being moved to
the diagonal. This is refered to as a `relaxed modi�ed incomplete factorisation';
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see [7, 11, 20, 44]. Also, some methods perturb the diagonal by adding elements
of order h2 to the diagonal; see [2, 8]. Such (perturbed) modi�ed incomplete
factorisation algorithms can be proved to give �(M�1A) = O(h�1); see [26,
36, 10]. (There is of course an equivalence of sorts between the relaxed and
perturbed modi�ed methods.)

An intuitive way of explaining the order reduction is to observe that the rest
matrix becomes a zero-rowsum di�erence matrix, giving

(Ru)i = O(h); 8i
for vectors that are C1

0
(
). Gustafsson [26] showed the relation of this condition

to a suÆcient condition for order reduction.
Most studies of modi�ed incomplete factorisations implicitly assume a nat-

ural ordering of the unknowns. Discussions of the ordering issue in this context
can be found in, e.g., [9, 28].

2.7 Gustafsson's method of modi�ed elements

In e�ect the problem with incomplete factorisations of symmetric non-M-matrices
lies in the positive o�-diagonal elements. Therefore, Gustafsson [27] proposed
to eliminate these elements by moving them to the diagonal prior to the factori-
sation. (This method was also explored in [3].)

Since this can be considered a modi�cation on the element matrix level,
speci�cally by adding positive semi-de�nite matrices, we �nd that the so mod-
i�ed matrix Am has a relative condition to the original matrix independent of
the matrix size:

utAu � utAmu � �utAu

where � > 1 is the maximum relative condition over all element matrices. The
crucial fact here is that � is independent of the matrix size.

A modi�ed incomplete factorisation M of Am will then give

�(M�1A) � ��(M�1Am) = O(h�1):

The philosophical problem with this method is that it can wind up pre-
conditioning the wrong operator. For instance, the biharmonic operator has a
stencil

1
2 �8 2

1 �8 20 �8 1
2 �8 2

1

which after elimination of the positive coeÆcients becomes

�8
�8 32 �8

�8
;
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that is, a multiple of the Laplacian, a di�erent operator altogether.
Although Gustafsson formulated this method on the element matrix level, it

can be applied algebraically to a fully formed matrix. The only diÆculty arises
along the boundary of the domain, where certain element matrix coeÆcients
have gone into forming the right hand side, and hence can not be retrieved
from the matrix. We then have to apply a heuristic, for instance forcing the
corresponding rows to have zero rowsums. As an example, performing algebraic
removal on the above biharmonic stencil, the points at distance 2h from the
boundary will have rowsums �1.

2.8 Jennings and Malik's partial elimination

Moving �ll-in to the diagonal in modi�ed incomplete factorisations of M-matrices
corresponds to adding negative semi-de�nite matrices to the original matrix. In
the M-matrix case this does not make the matrix inde�nite, but in general this
is not true, potentially leading to inde�nite matrices and negative pivots.

Jennings and Malik [29] proposed to add the absolute size of the �ll elements
to the diagonal. This corresponds to adding positive de�nite or semi-de�nite
matrices. As this only increases the diagonal, it is easy to see that the fac-
torisation never becomes unde�ned. We note that in the case where aij and
aji are of opposite sign this strategy is theoretically defensible: for such `sign
anti-symmetric' matrices it reduces to MILU. In general however, it guarantees
nothing beyond the mere existence of the factorisation; in particular, for the
model case of M-matrices it does not reduce to any other method.

This method was also proposed by Robert [41].

2.9 Eijkhout's `weighted modi�cation' method

Eijkhout's method aims to conserve the following matrix properties when mak-
ing an incomplete factorisation:

1. Any symmetry of the original matrix is to be preserved. Note that this
is not trivial in the case of threshold dropping, as can be easily seen from
equation (7).

2. The factorisation should be well-de�ned in the sense that, given a matrix
with positive diagonal, all pivots should be positive. Note that this is a
stronger condition than the traditional one that pivots should be positive
for matrices that are positive de�nite. This makes the method potentially
suitable for certain inde�nite systems.

3. The spectrum is not to be disturbed too much, in particular, the dropping
strategy should reduce to some variant of MILU for M-matrices.

4. Applying the factorisation to an M-matrix should yield an M-matrix.
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These aims are accomplished by eliminating the o�-diagonal �ll elements in
(i; j) and (j; i) elements together by added weighted combinations of them to
the (i; i) and (j; j) diagonal elements:

aii  aii � aij

q
aii=ajj=2; ajj  ajj � aji

q
ajj=aii=2:

This basic idea is augmented by some heuristics and dynamic conditions to skip
the modi�cation in certain cases.

3 Other topics in incomplete factorisations

3.1 H-matrices

Most M -matrix theory can easily be generalised to H-matrices. (A matrix is
an H-matrix if its `comparison matrix' is an M -matrix; basic theory of H-
matrices can be found in Ostrowski [37] and Neumaier [35].) For the scalar
case this generalization was done by Varga et al [45], and for the block case by
Polman [39].

3.2 Ordering of unknowns

Symmetric permutations PAP t of the coeÆcient matrix could be used to put o�,
or perhaps avoid altogether, problems with zero or negative pivots. In [47] the
authors explore the idea that an incomplete factorisation exists if the ordering is
such that the factorisation is exact. From this they derive a suÆcient condition
on the sparsity patterns of the matrix and the preconditioner.

However, in incomplete factorisations orderings are usually chosen for other
reasons. As we indicated in sections 2.6.1 and 2.6.2, certain orderings would not
lead to a well-de�ned factorisation, or would not give the desired accuracy.

Considerations of parallelism or vectorisability may also dictate the ordering
of the unknowns, at least to an extent. Du� and Meurant [16] reported tests on
the in
uence of ordering strategies on the convergence speed of the conjugate
gradients method. These results were explained in the model case by Doi [15]
and more general by Eijkhout [19]. In [13] the ordering was chosen, while keeping
the maximum �ll level �xed, in such a way as to minimise the size of the �ll
elements.

3.3 Preconditioning from equivalent operators

Often, the existence problems of incomplete factorisation methods arise from
the fact that the discretisation uses higher-order �nite di�erence or �nite ele-
ment schemes, or from the asymmetry of the problem. One could obviate these
problems by basing the factorisation on a matrix or an operator related to the
original one. Given a matrix A, a related matrix A0, and a preconditioner,
accuracy estimates then follow from equations such as

�(M�1A) � �(M�1A0) � �(A0
�1A);
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where often analytic results hold for �(A0
�1A).

For instance, one could base the preconditioner on the symmetric part (A+
At)=2 of the coeÆcient matrix. This idea was explored in, e.g., [25, 46].

If the actual PDE operator is known, the preconditionerM can be based on
a lower order �nite element discretisation A0. In this case we have �(A0

�1A) =
O(1) [2]. The advantage of this strategy lies in that the lower order discretisation
may very well given an M-matrix, so the existence problem of the preconditioner
is solved. For an example of this approach, see[21].

3.4 O�-diagonal modi�cation

Axelsson and Munksgaard [4] made, like Jennings and Malik (section 2.8), the
observation that modi�cation decreases the diagonal elements, thereby possibly
making the factorisation inde�nite, was also made. Unlike Jennings and Malik,
they proposed not altering the �ll element to be moved, but rather propose to
add it to any positive o�-diagonal element. This method has no theoretical
guarantees, and the authors therefore suggest that adding a positive number to
the diagonal (as happens in the methods of Kershaw, section 2.4, and Manteu�el,
section 2.5) can be used as a �nal remedy.

3.5 Stability of the preconditioner solve

If the preconditioner is well-de�ned and gives a small enough rest matrix, there
is still a further complication that may lead to slowly or not converging iterative
methods. By considering the solution of the triangular systems as a recurrence
relation, we see that build-up of round-o� error is possible if the roots of the
characteristic polynomial are greater than 1 in absolute value.

For example, solving Lu = v for a matrix L with constant diagonals L =
(`n; 0; : : : ; 0; `1; d) corresponds to the recurrence dui + `1ui�1 + `nui�n = vi,
with a characteristic polynomial dxn + `1x

n�1 + `n. The stability of this was
analysed by Elman [23, 24], and found to be equivalent to the factors being
diagonally dominant.

For a short proof, consider the recurrence

a0xi +

nX
j=1

ajxi�j = fi

with characteristic solutions xi = �i where � is a solution of

a0�
i +

nX
j=1

aj�
i�j = 0:

Now suppose that the matrix is diagonally non-strictly dominant, that is, a0 �P jaj j. The assumption j�j > 1 gives by

1 =

����
X aj

a0
��j
���� �
X����

aj
a0
��j
���� <
X����

aj
a0

����
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a contradiction, therefore the characteristic roots satisfy j�j � 1.
Elman's stability condition was also suggested by van der Vorst [43]. It

should be noted that this analysis mostly pertains to problems with slowly
varying or constant diagonals.

3.6 Block factorisations

In this report we will not consider block factorisation methods. These treat the
matrix in terms of larger subblocks than the scalar entries, for instance deriving
blocks from lines of grid points in the physical domain of the PDE. The scalar
factorisation problem often appears in these methods, since they may require
an approximation to the inverse of the pivot blocks. The interested reader is
referred to [1, 6, 5, 10, 12, 31, 38, 42].

4 Conclusion

While ideally an incomplete factorisation should be judged solely on its accuracy
properties, in practice there is �rst the hurdle of guaranteeing its existence.
Various strategies have been proposed to ascertain this Some of them, such
as the methods of Gustafsson and of Kershaw, become e�ectively no-ops in
the cases where the classical algorithms are well-de�ned. Others, such as the
methods of Eijkhout and of Jennings and Malik, are always applied. In either
case, the repair strategy can have more or less theoretical justi�cation, with
consequent implications for the approximation accuracy of the preconditioner.

In this paper we have given an overview of the existing methods and several
attendant issues. Since no set of tests can ever be comprehensive we have not
included any numerical results in this survey; the reader is referred to [18] for
numerical results on the methods discussed here.
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