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Abstract

Incomplete factorisation methods su�er from possible breakdown in

the sense that pivots can become zero or negative. We propose a new

factorisation that does not su�er from this defect, and that preserves

several other useful properties. In numerical tests this method is seen to

be more reliable than existing methods.

1 Introduction

For the eÆcient solution of sparse linear systems Au = b by an iterative method,
the choice of a proper preconditioner is crucial. A preconditioner is a matrixM
that approximates A, but for which solving the system Mu = b is computation-
ally cheap. In addition, M itself should be easily constructable.

Since the original coeÆcient matrix A is sparse, people have sought to con-
struct sparse factorisations M = LU � A. The exact LU factorisation of A is
not sparse, so M is constructed by a so-called incomplete factorisation, where
the update

aij  aij � aikakk
�1akj (1)

is executed subject to some decision process.
Ideally, the only question concerning incomplete factorisations would be their

accuracy. For instance, typically the condition number �(A) � h�2 where h is
the mesh width, and one would hope that �(M�1A) is smaller, preferably of
a lower order than h�2. In practice, however, it is already hard to guarantee
the existence of the factorisation. To begin with, if i = j in equation (1), the
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updated value of aii can be zero leading to breakdown in the i-th elimination
step. A negative value of aii is a problem too, since, if A is positive de�nite, we
wantM to be so in order to guarantee the applicability of iterative methods such
as Conjugate Gradients, and consequently we need all pivots of the incomplete
factorisation to be positive.

Incomplete factorisation methods are well-de�ned for M-matrices, but for
any other type of matrix, even symmetric positive de�nite ones, they can su�er
from breakdown of some form or other. A number of remedies have been pro-
posed, but all su�er from certain disadvantages. In a companion paper [5] we
have presented the an overview of existing methods, with the emphasis on how
they tackle the existence problem.

In this paper we propose a new method: the `weighted modi�cation' al-
gorithm. The name derives from the fact that a �ll element in position (i; j)
is multiplied by a factor based on weighing aii and ajj before it is moved to
the diagonal. In another departure from common algorithms, the weighted �ll
is added to both aii and ajj . This new algorithm is �rst of all guaranteed
not to break down for matrices with positive diagonal elements, a class that
contains the positive de�nite matrices. Secondly, it satis�es several MILU-like
conservation properties in the case of symmetric matrices, de�nite matrices, or
M-matrices.

We conclude by reporing comparative tests on M-matrices, symmetric posi-
tive de�nite non-M-matrices, and nonsymmetric positive de�nite matrices, show-
ing the relative eÆciency of the various incomplete factorisation methods and
the severity of their breakdown problems.

2 The `weighted modi�cation' factorisation al-

gorithm

There are several matrix properties we want to conserve in devising a, positional
or numerical, dropping strategy.

1. Any symmetry of the original matrix should be preserved.

2. The factorisation should be well-de�ned in the sense that, given a positive
de�nite matrix, all pivots should be positive. In fact, the method we are
proposing satis�es a stronger condition, namely that it will yield positive
pivots if the original matrix has a positive diagonal.

3. The spectrum is not to be disturbed too much; in particular, we want the
dropping strategy to reduce to MILU for M-matrices.

4. Applying the factorisation to an M-matrix should yield an M-matrix.

In this report we will give a novel incomplete factorisation algorithm that satis-
�es these criteria. We do this in two steps: �rst we describe a careful method for
eliminating �ll elements, then we incorporate that in a full-
edged factorisation
algorithm.
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2.1 Elimination of �ll-in

Let the framework for a factorisation algorithm be given as in �gure 1. Note

for k = 1; : : :
for j > k

for k < i < j
process �ll elements (i; j) and (j; i)

process diagonal �ll element (j; j)

Figure 1: The main ijk loop of an incomplete factorisation algorithm.

that the inner loops describe only half of the index space fi; j > kg: the inner-
most loop body tackles simultaneously the �ll in (i; j) and (j; i) positions.

In this section we describe an algorithm for eliminating the o�-diagonal �ll
elements in (i; j) and (j; i) elements by added weighted combinations of them
to the (i; i) and (j; j) diagonal elements.

Consider then the 2� 2 block

A � A[i;j] =

�
aii aij
aji ajj

�
:

1. Let
�x = jaij j=paiiajj ; �y = jajij=paiiajj :

(This comparison against a geometric mean of diagonal elements was also
used in [1].)

2. If �x � 1, choose 0 < �x < 1 and de�ne x = sign(aij)�x
p
aiiajj ; oth-

erwise, x = aij . Likewise, if �y � 1, choose 0 < �y < 1 and de-
�ne y = sign(aji)�y

p
aiiajj ; otherwise, y = aji.

The quantities x and y will be the fraction of the �ll that is moved to the
diagonal. We call the cases �x � 1, �y � 1 `degenerate', since they corre-
spond to the case where the �ll elements are too large to be moved without
making the modi�ed factorisation inde�nite. In practical applications we
expect �x; �y < 1 (and as shown below, this is guaranteed to be the case
for spd matrices); the introduction of x; y serves to keep the algorithm
well-de�ned when we positionally drop large o�-diagonal elements.

3. For positional dropping, decide to drop aij and aji based on some sparsity
set; for numerical dropping,

� drop aij if jaij j � 

p
aiiajj ,

� drop aji if jajij � 

p
aiiajj .

where 
 < 1 is some drop tolerance fraction.
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4. Let

Fx =

0
@�

x
2

q
aii
ajj

aij

0 �x
2

q
ajj
aii

1
A ; Fy =

0
@�

y

2

q
aii
ajj

0

aji �y
2

q
ajj
aii

1
A ; (2)

and F = Fx+Fy; we modify A A�Fx if aij is to be dropped, A A�Fy

if aji is to be dropped, and A A� F if both are to be dropped.

We give the algorithm in �gure 2.

let � < 1
let mij = aikakk

�1akj and mji = ajkakk
�1aki

let �x = jmij j=paiiajj and �y = jmjij=paiiajj
if �x < 1 then x = mij

else x = sign(mij)�
p
aiiajj

if �y < 1 then y = mji

else y = sign(mji)�
p
aiiajj

let fx
i = �xpaii=ajj=2, f

x
j = �xpajj=aii=2, and fy

i = �ypaii=ajj=2, f
y
j = �ypajj=aii=2

aii  aii � fx
i � fy

i

ajj  ajj � fx
j � fy

j

Figure 2: The algorithm for weighted motion of �ll elements to the diagonal.

Theorem 1 The above algorithm satis�es the four criteria given at the start of

section 2:

1. Symmetry is preserved in the sense that, with numerical dropping, aij =
aji implies that both elements are dropped or accepted together. With

positional dropping, symmetry depends on that of the sparsity set.

2. If the original matrix has positive diagonal elements, so have A � Fx,

A� Fy, and A� F .

3. If �x; �y < 1, the modi�cation F = Fx + Fy is semi-de�nite, with a zero

eigenvalue in the case of symmetry. The modi�cation is negative semi-

de�nite if the o�-diagonal elements of A are non-positive, positive semi-

de�nite if they are non-negative.

4. In the case of symmetry, the modi�cation preserves the product with the

vector v = (
p
ajj ;
p
aii)

t. This vector is pointwise positive, and, in the

case of non-degenerate modi�cation, Av is pointwise positive too.

Proof. The dropping criterium obviously preserves symmetry, since aij and aji
are compared to the same value 


p
aiiajj , so their being equal implies that we

eliminate both aij and aji.
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The next problem is preserving positive diagonal entries. The diagonal ele-
ments of A� F are positive, since, for instance,

aii+
x+ y

2

r
aii
ajj
� aii� jxj+ jyj

2

r
aii
ajj

> aii� �paiiajj
r

aii
ajj

= (1� �)aii > 0:

where � = maxf�x; �y ; 
g < 1.
Then, the determinant of F = Fx + Fy is

jF j =
1

2

r
aii
ajj

(x+ y)
1

2

r
ajj
aii

(x + y)� aijaji =
1

4
(x+ y)2 � aijaji

=
1

4
(x � y)2 � (aijaji � xy):

Thus, if �x; �y < 1, we have aijaji = xy and consequently F is semi-de�nite,
with both eigenvalues non-negative if the o�-diagonal elements are non-positive,
and vice versa. In the case of symmetry, and with �x = �y for degenerate
modi�cation, F has a zero eigenvalue.

For the positive vector v = (
p
ajj ;
p
aii)

t we have

Av =

�
aii
p
ajj + aij

p
aii

ajj
p
aii + aji

p
ajj

�

so Av > 0 if
�aij < paiiajj ; �aji < paiiajj ;

which is true in the non-degenerate case or for positive o�-diagonal elements.
Now,

Fv =

� x�y
2

p
aii

y�x

2

p
ajj

�

so, in the case of symmetry, (A� F )v = Av.
Qed.

Lemma 2 If the matrix is symmetric positive de�nite, there will be no degen-

erate modi�cation.

Proof. For a positive de�nite matrix A, the determinant aiiajj � aijaji of A is
positive. For a symmetric matrix this implies

aij = aji <
p
aiiajj ;

so that the conditions for degeneracy are not met. Qed.

2.2 Preserving the M-matrix property

The problem in using the weighted �ll-elimination strategy given above lies in
preserving the M-matrix property during the fatorisation. In traditional modi-
�ed methods the positive vector v to be used in the modi�cation (usually taken
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as v = (1; 1; : : :)t) is determined a priori, whereas the weighted modi�cation
strategy constructs it a posteriori: eliminating �ll elements in positions (i; j)
and (j; i) �xes the ratio of vi=vj .

It is then possible to �nd contradictory demands on the elements of v, e.g.,
when eliminating �ll elements (i1; j1), (i2 = j1; j2), (i3 = j2; j3 = i1). The �rst
two steps determine the ratios vi1=vj1 and vi2=vj2 , leaving no degree of freedom
for vi3=vj3 . We repair this by keeping track of the components of v that have
been `�xed into place' in this manner, and we skip certain elimination steps if
necessary. This conditional execution of the �ll statements, in e�ect, makes the
algorithm a cross between modi�ed LU and SSOR.

Additionally, we must make the diagonal �ll-in step contingent upon that
row having had its o�-diagonal �ll moved. Performing the diagonal �ll step
regardless would make the method subject to the breakdown seen in the un-
modi�ed ILU methods. Figure 3 gives an algorithm; it is theoretically fully

fix 0, dia 1
for k

for j > k
for k < i < j

if fix(i) = 0 or fix(j) = 0
eliminate �ll in (i; j) and (j; i) locations as described in �gure 2,
set fix(i) 1, fix(j) 1.

else set dia(i) = dia(j) = 0
if dia(j) = 1

ajj  ajj � ajkakk
�1akj .

Figure 3: Altered inner factorisation loop to preserve M-matrix property.

guaranteed to preserve the M-matrix property.

2.3 Fine tuning

The main problem with incomplete factorisations, giving rise to non-positive
pivots, is that �ll subtracted from the diagonal usually is positive, thereby de-
creasing the diagonal element. While in exact factorisation there are theoretical
guarantees that the diagonal will never be decreased below zero, in incomplete
methods it raises the possibility of nonpositive pivots.

In some cases such as convection-dominated problems, however, �ll elements
are often negative, and they increase the size of the diagonal element. (This ob-
servation can be taken to be basis of the methods of Jennings and Malik [9], and
of Robert [13].) Thus, for positive �ll elements there is no need for the elaborate
weighing strategy, and we do not have to make the diagonal �ll conditional as
described in the previous subsection.

The over-speci�cation argument above implies that we have to ignore certain
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�ll elements. Intuitively, it is more important to handle large elements correctly
than small elements. Therefore, we sort the elements in a row and column
currently being eliminated by magnitude. In practical tests we have seen this
to make a considerable di�erence in the number of iterations, up to almost a
factor of two on the Harwell-Boeing matrix bcsstk03.

While the above theory is based on an exact move of the { weighted {
�ll to the diagonal, in a practical application we multiply the �ll by a factor
slightly less than one. Such a relaxation has been advocated for various reasons
in [2, 3, 4, 6, 14].

We arrive at the inner loop described in �gure 4;

fix 0, dia 1
for j > k

for k < i < j
let mij = aikakk

�1akj and mji = ajkakk
�1aki

if mij < 0
let fx

i = mij and fx
j = 0

otherwise compute fx
i , f

x
j as in �gure 2 updating fix and dia.

if mji < 0
let fy

i = 0 and fy
j = mji

otherwise compute fy
i , f

y
j as in �gure 2, updating fix and dia.

aii  aii � fx
i � fx

j

ajj  ajj � fx
j � fy

j

if dia(j) = 1 or ajkakk
�1akj < 0

ajj  ajj � ajkakk
�1akj < 0

Figure 4: The weighted inner loop, with conditionals disabling distribution in
`unsafe' cases.

3 Tests

We ran a number of tests to judge the performance of the various factorisation
methods. We tested both simple and more complicated problems, so that the
eÆcacy of the pivot repair stategies could be judged, as well as their in
uence
in cases where they would not be needed.

In all of the next tables we gave iteration numbers; `inf' denotes that the
method showed no perceptible convergence at a certain cuto� point, typically
1000 iterations; `�1 denotes that the iterative method broke down, typically
after only a few iterations.
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n SSOR ILU jILU wILU �ILU
20 19 17 20 18 16
40 35 30 36 31 23
80 34 50 68 51 34

Table 1: Number of iterations of CG with a 'D'-variant incomplete factorisation
on the 5-point Laplacian stencil on an n� n grid.

3.1 Numerical results

We use a number of representative factorization methods to solve systems with
various symmetric and nonsymmetric coeÆcient matrices. This methods are
described in detail in [5]. In the tables, the following names are used:

gILU A modi�ed method preceded by Gustafsson's modi�cation; see [8]. This
method eliminates all positive o�-diagonal elements prior to the (modi�ed)
incomplete factorisation.

jILU The Jennings and Malik method; see [9]. This method adds the absolute
value of �ll to the diagonal.

kILU The Kershaw method; see [10]. This method sets any arising negative
pivots to an appropriate positive value. We omitted updating the Schur
complement whenever pivot repair was needed.

mILU Manteu�el's method; see [11]. This method adds a suÆcient amount
to the diagonal to prevent negative pivots; it was implemented as follows.
Let v be a vector such that vi = maxf0;�Aii +

P
j 6=i jAij jg. Since A +

diag(v) is (non-strictly) diagonally dominant, there is an 0 � � � 1 such
that A + diag(v) has a well-de�ned factorisation. The algorithm then
successively tries � = 0; :1; :2:; 3; : : : . While this is not optimal, at least it
illustrates the principle.

�ILU Modi�ed ILU; see [7].

wILU The weighted modi�cation ILU introduced above.

3.2 Symmetric positive de�nite M-matrices

On SPD M-matrices, ILU and �ILU are well-de�ned. Thus there is no need for
repair strategies. Some repair strategies, such as in the Kershaw and Manteu�el
methods, are indeed not invoked. Others, such as in the Jennings and Weighted
method, are always invoked; with these problems we thus only test any possible
performance degradation due to these strategies. Furthermore, the Gustafsson
method reduced to modi�ed incomplete factorisation. We tested two model
problems: the 5-point Laplacian, reported in table 1, and the 9-point fourth
order Laplacian, reported in table 2. We used a standard Conjugate Gradient
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n SSOR ILU jILU wILU �ILU
20 19 18 21 19 17
40 31 30 38 34 24
80 58 53 71 58 35

Table 2: Number of iterations of CG with a 'D'-variant incomplete factorisation
on the fourth-order 9-point �nite di�erence Laplacian stencil on an n� n grid.

n SSOR ILU gILU jILU kILU mILU wILU �ILU
20 70 -1 39 113 inf 79 98 -1
40 199 -1 75 372 inf 252 322 -1
80 683 -1 147 1063 inf 789 905 -1

Table 3: Number of iterations of CG with a 'D'-variant incomplete factorisation
on the biharmonic 
ake problem on an n� n grid.

method with a right hand side of all ones; the stopping test was on a relative
reduction of 10�6, and the cuto� point was at 1000 iterations1.

We see that the Jennings and Malik method increases the number of iter-
ations with respect to simple ILU; Eijkhout's weighted method gives a slight
increase in that sense, and it does not grow like modi�ed ILU, in spite of its
theoretical resemblances.

3.3 Symmetric positive de�nite non-M-matrices

For matrices that are SPD but are not M-matrices, a full factorisation is de-
�ned, but an incomplete factorisation need not be. However, ILU and �ILU
are not immediately guaranteed to breakdown. In order to get an indication
of the likelihood of breakdown, and the eÆcacy of methods where existence is
guaranteed, we tested two stencils for the biharmonic equation. The iterative
method was set up as above.

In tables 3, 4, 5, and reftab:star1, we give the results for the following two
stencils:

� the `biharmonic 
ake' stencil found by multiplying the Laplace stencil by
itself, and

1In table 3 it was clear that one method had almost converged so we reran the test with a
slightly higher maximum number of iterations.

n SSOR ILU gILU jILU kILU mILU wILU �ILU
20 70 -1 45 84 inf 48 70 15
40 199 -1 85 282 inf 156 217 25
80 683 -1 171 792 inf 491 626 48

Table 4: Number of iterations of CG with a level-1 incomplete factorisation on
the biharmonic 
ake problem on an n� n grid.
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n SSOR ILU gILU jILU kILU mILU wILU �ILU
20 52 40 44 79 40 40 88 -1
40 127 113 88 257 113 113 264 -1
80 441 375 177 703 375 375 870 -1

Table 5: Number of iterations of CG with a 'D'-variant incomplete factorisation
on the biharmonic star problem on an n� n grid.

n SSOR ILU gILU jILU kILU mILU wILU �ILU
20 52 -1 40 74 inf 43 69 18
40 127 -1 74 234 inf 119 205 34
80 441 -1 148 676 inf 416 699 65

Table 6: Number of iterations of CG with a level-1 incomplete factorisation on
the biharmonic star problem on an n� n grid.

� the `biharmonic { 9-point { star' stencil that uses only connections along
the coordinate axes.

The results allow us to draw the following conclusions:

� ILU can break down, but need not, as in the case of the star stencil. In
the case it does not, the Kershaw and Manteu�el methods coincide with
ILU.

� Modi�ed ILU is just as risky as ILU on such non-M-matrices.

� If ILU breaks down, the Kershaw method o�ers no solace; the Jennings
and Malik, Manteu�el and Eijkhout methods do converge, though not
necessarily faster than SSOR.

� Gustafsson's method is superior on these problem, due to the fact that
after preprocessing the reduced stencil is an M-matrix, for which the sub-
sequent modi�ed ILU factorisation performs very well. We can not expect
this behaviour to persist beyond this special case.

3.4 Nonsymmetric positive de�nite matrices

We generate a model convection-di�usion problem by the �ve-point central dif-
ference discretisation of

��u+ s�v � u = f (3)

where �v = (sin�; cos�)t and s > 0. The matrix from this stencil may have
positive o�-diagonal coeÆcients, and may not be diagonally dominant.

In a practical situation the convection part is smaller by a factor of h, so
these adverse properties only hold for matrices up to a certain size. In our tests
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n SSOR ILU gILU jILU kILU mILU wILU �ILU
20 18 16 12 20 16 16 17 12
40 24 23 14 31 23 23 24 14

Table 7: Convergence results on a 5-point convection di�usion stencil with factor
3 upwind, preconditioned with a D-variant method on an n� n grid.

n SSOR ILU gILU jILU kILU mILU wILU �ILU
20 26 15 inf inf 182 inf 25 12
40 56 22 inf inf 910 inf 59 13

Table 8: Convergence results on a 5-point convection di�usion stencil with factor
20 upwind, preconditioned with a D-variant method on an n� n grid.

we have explicitly let the size of the convection part be �xed with respect to the
di�usion part. Speci�cally, we used the stencil

�1 �4 �1
�4 20 �4
�1 �4 �1

+ c �
1
�2 1

where c = 3 in table 7, and c = 20 in table 8. In the latter case, the initial
matrix will already have positive o�-diagonal elements.

We used a BiConjugate Gradient method with a right hand side of all ones;
the stopping test was on a relative reduction of 10�6, and the cuto� point was
at 1000 iterations.

We draw the following conclusions.

� On the problem with weak convection, all methods converge, and in a very
similar number of iterations.

� Surprisingly, ILU and �ILU converge on the problem with strong convec-
tion.

� Contrary to the case in table 3, in the strong-convection problem the
Kershaw method converged whereas the Jennings and Malik method did
not. However, the convergence of the Kershaw method was much slower
than of the other converging methods.

� We note that among the methods that are guaranteed not to break down,
only the `weighted modi�cation' method actually converged.

3.5 Non-model matrices

We tested a number of matrices from the Harwell-Boeing collection, both sym-
metric and nonsymmetric. From the results in table 9 we draw the following
conclusions:
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matrix ssor ILU gILU jILU kILU mILU wILU �ILU
bcsstk14 188 33 450 270 33 33 184 -1
bcsstk26 885 103 inf 1196 103 103 620 -1
gre115 inf inf 56 107 inf 28 105 104
gre185 inf 150 199 150 371 172 221 206
gre512 157 156 295 129 156 156 127 129
orsirr1 184 19 -1 14 inf inf 14 14

Table 9: Convergence results on various test problems, using a level-1 factori-
sation.

� In these test problems, we see instances of matrices for which SSOR does
not converge, or converges slowly. In previous tests, SSOR looked like a
fairly attractive method.

� Surprisingly, ILU(1) will converge in some cases where there is no theo-
retical guarantee. In gre115 we have an instance of ILU(1) not break-
ing down, but also not converging. In orsirr1 we have a matrix where
ILU(1) breaks down, but the BiConjugate Gradient method converges
nevertheless. Repairing the breakdown with the Kershaw trick leads to
non-convergence.

� The gILU method can not normally break down; however, on the orsirr1
matrix division by zero occurs because of zero pivots. This phenomenon
was explained in [6, 12].

4 Conclusion

The existence problem of incomplete factorisations, that is, the matter of guar-
anteeing positive pivots in an incomplete factorisation where a full factorisation
carries such a guarantee, is a hard one. Several methods exist that will give
positive pivots, but several of them can be characterised as little more than
stop-gap measures. The tests in this paper illustrate that such methods can
have severe convergence problems.

We have introduced a new method, the `weighted modi�cation' factorisation,
which guarantees positive pivots for any matrix with positive diagonal elements,
a strict superset of the positive de�nite matrices. This method is not uniformly
faster to converge when other methods converge, but it is more robust, converg-
ing on every problem where any other method converges. Note that we are not
saying that it will give a converging iterative method on every matrix. Still, we
hope to have added one more trick to the literature of incomplete factorisation
methods.
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