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Standardized Numerical Linear Algebra SoftwareJack J. DongarraVictor Eijkhout1 IntroductionThe increasing availability of advanced-architecture computers has a signi�cante�ect on all spheres of scienti�c computation, including algorithm research andsoftware development in numerical linear algebra. Linear algebra|in particular,the solution of linear systems of equations|lies at the heart of most calculationsin scienti�c computing. This chapter discusses some of the recent developmentsin linear algebra designed to exploit these advanced-architecture computers.We discuss two broad classes of algorithms: those for dense, and those forsparse matrices. A matrix is called sparse if it has a substantial number of zeroelements, making specialized storage and algorithms necessary.Much of the work in developing linear algebra software for advanced-architecturecomputers is motivated by the need to solve large problems on the fastest com-puters available. In this chapter, we focus on four basic issues: (1) the moti-vation for the work; (2) the development of standards for use in linear algebraand the building blocks for libraries; (3) aspects of algorithm design and parallelimplementation; and (4) future directions for research.As representative examples of dense matrix routines, we will consider theCholesky and LU factorizations, and these will be used to highlight the mostimportant factors that must be considered in designing linear algebra softwarefor advanced-architecture computers. We use these factorization routines for il-lustrative purposes not only because they are relatively simple, but also becauseof their importance in several scienti�c and engineering applications that makeuse of boundary element methods. These applications include electromagneticscattering and computational 
uid dynamics problems, as discussed in moredetail in Section 2.1.2.For the past 15 years or so, there has been a great deal of activity in thearea of algorithms and software for solving linear algebra problems. The goalof achieving high performance on codes that are portable across platforms haslargely been realized by the identi�cation of linear algebra kernels, the BasicLinear Algebra Subprograms (BLAS). We will discuss the Eispack, Linpack,Lapack, and Scalapack libraries which are expressed in successive levels of theBLAS.The key insight of our approach to designing linear algebra algorithms foradvanced architecture computers is that the frequency with which data aremoved between di�erent levels of the memory hierarchy must be minimized inorder to attain high performance. Thus, our main algorithmic approach for1



exploiting both vectorization and parallelism in our implementations is the useof block-partitioned algorithms, particularly in conjunction with highly-tunedkernels for performing matrix-vector and matrix-matrix operations (the Level 2and 3 BLAS).2 Dense Linear Algebra Algorithms2.1 Overview of Dense AlgorithmsCommon operations involving dense matrices are the solution of linear systemsAx = b;the least squares solution of over- or underdetermined systemsminx kAx� bk;and the computation of eigenvalues and -vectorsAx = �x:Although these problems are formulated as matrix-vector equations, their so-lution involves a de�nite matrix-matrix component. For instance, in order tosolve a linear system, the coe�cient matrix is �rst factored asA = LU(or A = U tU in the case of symmetry) where L and U are lower and uppertriangular matrices respectively. It is a common feature of these matrix-matrixoperations that they take, on a matrix of size n � n, a number of operationsproportional to n3, a factor n more than the number of data elements involved.Thus we are led to identify three levels of linear algebra operations:� Level 1: vector-vector operations such as the update �y  �y + ��x and theinner product d = �xt�y. These operations involve (for vectors of length n)O(n) data and O(n) operations.� Level 2: matrix-vector operations such as the matrix-vector product y =Ax. These involve O(n2) operations on O(n2) data.� Level 3: matrix-matrix operations such as the matrix-matrix product C =AB. These involve O(n3) operations on O(n2) data.These three levels of operations have been realized in a software standards knownas the Basic Linear Algebra Subprograms (BLAS) [17, 18, 46]. Although BLASroutines are freely available on the net, many computer vendors supply a tuned,often assembly-coded, BLAS library optimised for their particular architecture.See also section 4.3.The relation between the number of operations and the amount of datais crucial for the performance of the algorithm. We discuss this in detail insection 3.1. 2



2.1.1 Loop rearrangingThe operations of BLAS Levels 2 and 3 can be implemented using doubly andtriply nested loops respectively. With simply modi�cations, this means that forLevel 2 each algorithms has two, and for Level 3 six di�erent implementations.For instance, solving a lower triangular system Lx = y is mostly writtenfor i = 1 : : : nt = 0for j = 1 : : : i� 1t t+ `ijxjx = `�1ii (yi � t)but can also be written asfor j = 1 : : : nxj = `�1jj yjfor i = j + 1 : : : nyi  yi � `ijxj(The latter implementation overwrites the right hand side vector y, but this canbe eliminated.)While the two implementations are equivalent in terms of numbers of oper-ations, there may be substantial di�erences in performance due to architecturalconsiderations. We note, for instance, that the inner loop in the �rst implemen-tation uses a row of L, whereas the innner loop in the second traverses a column.Since matrices are usually stored with either rows or columns in contiguous lo-cations, column storage the historical default inherited from the FORTRANprogramming language, the performance of the two can be radically di�erent.We discuss this point further in section 3.1.2.1.2 Uses of LU Factorization in Science and EngineeringA major source of large dense linear systems is problems involving the solutionof boundary integral equations. These are integral equations de�ned on theboundary of a region of interest. All examples of practical interest computesome intermediate quantity on a two-dimensional boundary and then use thisinformation to compute the �nal desired quantity in three-dimensional space.The price one pays for replacing three dimensions with two is that what startedas a sparse problem in O(n3) variables is replaced by a dense problem in O(n2).Dense systems of linear equations are found in numerous applications, in-cluding:� airplane wing design;� radar cross-section studies;� 
ow around ships and other o�-shore constructions;3



� di�usion of solid bodies in a liquid;� noise reduction; and� di�usion of light through small particles.The electromagnetics community is a major user of dense linear systemssolvers. Of particular interest to this community is the solution of the so-calledradar cross-section problem. In this problem, a signal of �xed frequency bounceso� an object; the goal is to determine the intensity of the re
ected signal in allpossible directions. The underlying di�erential equation may vary, dependingon the speci�c problem. In the design of stealth aircraft, the principal equationis the Helmholtz equation. To solve this equation, researchers use the methodof moments [37, 62]. In the case of 
uid 
ow, the problem often involves solvingthe Laplace or Poisson equation. Here, the boundary integral solution is knownas the panel method [38, 39], so named from the quadrilaterals that discretizeand approximate a structure such as an airplane. Generally, these methods arecalled boundary element methods.Use of these methods produces a dense linear system of size O(N) by O(N),where N is the number of boundary points (or panels) being used. It is notunusual to see size 3N by 3N , because of three physical quantities of interestat every boundary element.A typical approach to solving such systems is to use LU factorization. Eachentry of the matrix is computed as an interaction of two boundary elements.Often, many integrals must be computed. In many instances, the time requiredto compute the matrix is considerably larger than the time for solution.The builders of stealth technology who are interested in radar cross-sectionsare using direct Gaussian elimination methods for solving dense linear systems.These systems are always symmetric and complex, but not Hermitian.For further information on various methods for solving large dense linearalgebra problems that arise in computational 
uid dynamics, see the report byAlan Edelman [26].2.2 Block Algorithms and Their DerivationIt is comparatively straightforward to recode many of the dense linear algebraalgorithms so that they use Level 2 BLAS. Indeed, in the simplest cases the same
oating-point operations are done, possibly even in the same order: it is justa matter of reorganizing the software. To illustrate this point, we consider theCholesky factorization algorithm, which factors a symmetric positive de�nitematrix as A = UTU . We consider Cholesky factorization because the algorithmis simple, and no pivoting is required on a positive de�nite matrix.Suppose that after j � 1 steps the block A00 in the upper lefthand cornerof A has been factored as A00 = UT00 U00. The next row and column of thefactorization can then be computed by writing A = UTU as4



0@ A00 bj A02: ajj cTj: : A22 1A = 0@ UT00 0 0vTj ujj 0UT02 wj UT22 1A0@ U00 vj U020 ujj wTj0 0 U22 1Awhere bj , cj , vj , and wj are column vectors of length j � 1, and ajj and ujj arescalars. Equating coe�cients of the jth column, we obtainbj = UT00vjajj = vTj vj + u2jj :Since U00 has already been computed, we can compute vj and ujj from theequations UT00vj = bju2jj = ajj � vTj vj :The computation of vj is a triangular system solution, a BLAS Level 2operation. Thus, a code using this will have a single call replacing a loop ofLevel 1 calls or a doubly nested loop of scalar operations.This change by itself is su�cient to result in large gains in performance ona number of machines|for example, from 72 to 251 mega
ops for a matrix oforder 500 on one processor of a CRAY Y-MP. Since this is 81% of the peakspeed of matrix-matrix multiplication on this processor, we cannot hope to dovery much better by using Level 3 BLAS.We can, however, restructure the algorithm at a deeper level to exploit thefaster speed of the Level 3 BLAS. This restructuring involves recasting thealgorithm as a block algorithm|that is, an algorithm that operates on blocksor submatrices of the original matrix.2.2.1 Deriving a Block AlgorithmTo derive a block form of Cholesky factorization, we partition the matrices asshown in Figure 1, in which the diagonal blocks of A and U are square, butof di�ering sizes. We assume that the �rst block has already been factored asA00 = UT00U00, and that we now want to determine the second block columnof U consisting of the blocks U01 and U11. Equating submatrices in the secondblock of columns, we obtainA01 = UT00U01A11 = UT01U01 + UT11U11:Hence, since U00 has already been computed, we can compute U01 as the solutionto the equation UT00U01 = A015
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0 0 U22Figure 1: Partitioning of A, UT , and U into blocks. It is assumed that the�rst block has already been factored as A00 = UT00U00, and we next want todetermine the block column consisting of U01 and U11. Note that the diagonalblocks of A and U are square matrices.by a call to the Level 3 BLAS routine STRSM; and then we can compute U11from UT11U11 = A11 � UT01U01:This involves �rst updating the symmetric submatrix A11 by a call to theLevel 3 BLAS routine SSYRK, and then computing its Cholesky factorization.Since Fortran does not allow recursion, a separate routine must be called, usingLevel 2 BLAS rather than Level 3. In this way, successive blocks of columns ofU are computed.But that is not the end of the story, and the code given above is not thecode actually used in the LAPACK routine SPOTRF. We mentioned earlier thatfor many linear algebra computations there are several algorithmic variants,often referred to as i-, j-, and k-variants, according to a convention introducedin [15, 23] and explored further in [53, 54]. The same is true of the correspondingblock algorithms.It turns out that the j-variant chosen for LINPACK, and used in the aboveexamples, is not the fastest on many machines, because it performs most of thework in solving triangular systems of equations, which can be signi�cantly slowerthan matrix-matrix multiplication. The variant actually used in LAPACK is thei-variant, which relies on matrix-matrix multiplication for most of the work.Table 1 summarizes the results.
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Table 1: Speed (Mega
ops) of Cholesky Factorization A = UTU for n = 500CRAY T-90, CRAY T-90,1 proc. 4 proc.j-variant: LINPACK 376 392j-variant: using Level 3 BLAS 1222 2306i-variant: using Level 3 BLAS 1297 32793 The in
uence of computer architecture on per-formance3.1 Discussion of architectural featuresIn section 2.1.1 we noted that for BLAS Levels 2 and 3 several equivalent imple-mentations of the operations exist. These di�er, for instance, in whether theyaccess a matrix operand by rows or columns in the inner loop. In FORTRAN,matrices are stored by columns, so accessing a column corresponds to accessingconsecutive memory elements. On the other hand, as one proceeds across arow, the memory references jump across memory, the length of the jump beingproportional to the length of a column.We will now give a simpli�ed discussion on the various architectural issuesthat in
uence the choice of algorithm. The following is, of necessity, a simpli�edaccount of the state of a�airs for any particular architecture.At �rst, we concentrate only on `non-blocked' algorithms. In blocked meth-ods, discussed in more detail below, every algorithm has two levels on whichwe can consider loop arranging: the block level, and the scalar level. Often,the best arrangement on one level is not the best on the other. The next twosubsections concern themselves with the scalar level.3.1.1 Using consecutive elementsThe decision how to traverse matrix elements should usually be taken so as to useelements that are consecutive in storage. There are at least three architecturalreasons for this.page swapping By using consecutive memory elements, instead of ones atsome stride distance of each other, the amount of memory page swappingis minimized.memory banks If the processor cycle is faster than the memory cycle, andmemory consists of interleaved banks, consecutive elements will be in dif-ferent banks. By contrast, taking elements separated a distance equal tothe number of banks, all elements will come from the same bank. Thiswill reduce the e�ective performance of the algorithm to the memory speedinstead of the processor speed. 7



cache lines Processors with a memory cache typically do not bring in singleelements from memory to cache, but move them one `cache line' at atime. A cache line consists of a small number of consecutive memoryelements. Thus, using consecutive memory storage elements means thata next element will already be in cache and does not have to be broughtinto cache. This cuts down on memory tra�c.Whether consecutive elements correspond to rows or columns in a matrixdepends on the programming language used. In Fortran, columns are storedconsecutively, whereas C has row elements contiguous in memory.The e�ects of column orientation are quite dramatic: on systems with virtualor cache memories, the LINPACK library codes (section 4.4.2), which are writ-ten in FORTRAN and which are column-oriented, will signi�cantly outperformFORTRAN codes that are not column-oriented. In the C language, however,algorithms should be formulated with row-orientation. We note that textbookexamples of matrix algorithms are usually given in a row-oriented manner.3.1.2 Cache reuseIn many contemporary architectures, memory bandwidth is not enough to keepthe processor working at its peak rate. Therefore, the architecture incorporatessome cache memory, a relatively small store of faster memory. The memorybandwidth problem is now shifted to bringing the elements into cache, andthis problem can be obviated almost entirely if the algorithm can re-use cacheelements.Consider for instance a matrix-vector product y = Ax. The doubly nestedloop has an inner statement yi  yi + aijajimplying three reads and one write from memory for two operations. If we writethe algorithm as y� = x1a1� + x2a2� + � � �we see that, keeping y in cache1 and reusing the elements of x, we only need toload the column of A, making the asymptotic demand on memory one elementload once x and y have been brought into cache.3.1.3 Blocking for cache reuseAbove, we saw in the Cholesky example how algorithms can naturally be writtenin terms of Level 2 operations. In order to use Level 3 operations, a more drasticrewrite is needed.Suppose we want to perform the matrix-matrix multiplication C = AB,where all matrices are of size n � n. We divide all matrices in subblocks of1Since many level-1 caches are write-through, we wouldn't actually keep y in cache, butrather keep a number of elements of it in register, and reuse these registers by unrolling the`�' loop. 8



size k � k, and let for simplicity's sake k divide n: n = km. Then the triplynested scalar loop becomes, in one possible rearrangementfor i = 1 : : :mfor k = 1 : : :mfor j = 1 : : :mCij  Cij +AikBkjwhere the inner statement is now a size k matrix-matrix multiplication.If the cache is now large enough three of these smaller matrices, we can keepCij and Aik in cache2, while successive blocks Bkj are being brought in. Theratio of memory loads to operations is then (ignoring the loads of the elementsof C and A, which are amortised) k2=k3, that is, 1=k.Thus, by blocking the algorithm, and arranging the loops so that blocksare reused in cache, we can achieve high performance in spite of a low memorybandwidth.3.2 Target ArchitecturesThe EISPACK and LINPACK software libraries were designed for supercom-puters used in the 1970s and early 1980s, such as the CDC-7600, Cyber 205,and Cray-1. These machines featured multiple functional units pipelined forgood performance [41]. The CDC-7600 was basically a high-performance scalarcomputer, while the Cyber 205 and Cray-1 were early vector computers.The development of LAPACK in the late 1980s was intended to make theEISPACK and LINPACK libraries run e�ciently on shared memory, vectorsupercomputers. The ScaLAPACK software library will extend the use of LA-PACK to distributed memory concurrent supercomputers. The development ofScaLAPACK began in 1991 and is expected to be completed by the end of 1994.The underlying concept of both the LAPACK and ScaLAPACK librariesis the use of block-partitioned algorithms to minimize data movement betweendi�erent levels in hierarchical memory. Thus, the ideas discussed in this chapterfor developing a library for dense linear algebra computations are applicable toany computer with a hierarchical memory that (1) imposes a su�ciently largestartup cost on the movement of data between di�erent levels in the hierarchy,and for which (2) the cost of a context switch is too great to make �ne grain sizemultithreading worthwhile. Our target machines are, therefore, medium andlarge grain size advanced-architecture computers. These include \traditional"shared memory, vector supercomputers, such as the Cray C-90 and T-90, andMIMD distributed memory concurrent supercomputers, such as the SGI Origin2000, IBM SP, Cray T3E, and HP/Convex Exemplar concurrent systems.Future advances in compiler and hardware technologies are expected to makemultithreading a viable approach for masking communication costs. Since theblocks in a block-partitioned algorithm can be regarded as separate threads, ourapproach will still be applicable on machines that exploit medium and coarsegrain size multithreading.2Again, with a write-through level-1 cache, one would try to keep Cij in registers.9



4 Dense Linear Algebra Libraries4.1 Requirements on High-Quality, Reusable, Mathemat-ical SoftwareIn developing a library of high-quality subroutines for dense linear algebra com-putations the design goals fall into three broad classes:� performance� ease-of-use� range-of-use4.1.1 PerformanceTwo important performance metrics are concurrent e�ciency and scalability.We seek good performance characteristics in our algorithms by eliminating, asmuch as possible, overhead due to load imbalance, data movement, and algo-rithm restructuring. The way the data are distributed (or decomposed) over thememory hierarchy of a computer is of fundamental importance to these factors.Concurrent e�ciency, �, is de�ned as the concurrent speedup per processor [32],where the concurrent speedup is the execution time, Tseq, for the best sequentialalgorithm running on one processor of the concurrent computer, divided by theexecution time, T , of the parallel algorithm running on Np processors. Whendirect methods are used, as in LU factorization, the concurrent e�ciency de-pends on the problem size and the number of processors, so on a given parallelcomputer and for a �xed number of processors, the running time should notvary greatly for problems of the same size. Thus, we may write,�(N;Np) = 1Np Tseq(N)T (N;Np) (1)where N represents the problem size. In dense linear algebra computations, theexecution time is usually dominated by the 
oating-point operation count, sothe concurrent e�ciency is related to the performance, G, measured in 
oating-point operations per second by,G(N;Np) = Nptcalc �(N;Np) (2)where tcalc is the time for one 
oating-point operation. For iterative routines,such as eigensolvers, the number of iterations, and hence the execution time,depends not only on the problem size, but also on other characteristics of theinput data, such as condition number. A parallel algorithm is said to be scalable[34] if the concurrent e�ciency depends on the problem size and number ofprocessors only through their ratio. This ratio is simply the problem size perprocessor, often referred to as the granularity. Thus, for a scalable algorithm,the concurrent e�ciency is constant as the number of processors increases while10



keeping the granularity �xed. Alternatively, Eq. 2 shows that this is equivalentto saying that, for a scalable algorithm, the performance depends linearly onthe number of processors for �xed granularity.4.1.2 Ease-Of-UseEase-of-use is concerned with factors such as portability and the user interfaceto the library. Portability, in its most inclusive sense, means that the code iswritten in a standard language, such as Fortran or C, and that the source codecan be compiled on an arbitrary machine to produce a program that will runcorrectly. We call this the \mail-order software" model of portability, since itre
ects the model used by software servers such as netlib [19]. This notion ofportability is quite demanding. It requires that all relevant properties of thecomputer's arithmetic and architecture be discovered at runtime within the con-�nes of a compilable Fortran code. For example, if it is important to know theover
ow threshold for scaling purposes, it must be determined at runtime with-out over
owing, since over
ow is generally fatal. Such demands have resultedin quite large and sophisticated programs [24, 44], which must be modi�ed fre-quently to deal with new architectures and software releases. This \mail-order"notion of software portability also means that codes generally must be writtenfor the worst possible machine expected to be used, thereby often degrading per-formance on all others. Ease-of-use is also enhanced if implementation detailsare largely hidden from the user, for example, through the use of an object-basedinterface to the library [21].4.1.3 Range-Of-UseRange-of-use may be gauged by how numerically stable the algorithms are overa range of input problems, and the range of data structures the library willsupport. For example, LINPACK and EISPACK deal with dense matrices storedin a rectangular array, packed matrices where only the upper or lower half of asymmetric matrix is stored, and banded matrices where only the nonzero bandsare stored. In addition, some special formats such as Householder vectors areused internally to represent orthogonal matrices. In the second half of this paperwe will focus on sparse matrices, that is matrices with many zero elements, whichmay be stored in many di�erent ways.4.2 Portability, Scalability, and StandardsPortability of programs has always been an important consideration. Porta-bility was easy to achieve when there was a single architectural paradigm (theserial von Neumann machine) and a single programming language for scienti�cprogramming (Fortran) embodying that common model of computation. Ar-chitectural and linguistic diversity have made portability much more di�cult,but no less important, to attain. Users simply do not wish to invest signi�cantamounts of time to create large-scale application codes for each new machine.11



Our answer is to develop portable software libraries that hide machine-speci�cdetails.In order to be truly portable, parallel software libraries must be standardized.In a parallel computing environment in which the higher-level routines and/orabstractions are built upon lower-level computation and message-passing rou-tines, the bene�ts of standardization are particularly apparent. Furthermore,the de�nition of computational and message-passing standards provides vendorswith a clearly de�ned base set of routines that they can implement e�ciently.From the user's point of view, portability means that, as new machines aredeveloped, they are simply added to the network, supplying cycles where theyare most appropriate.From the mathematical software developer's point of view, portability mayrequire signi�cant e�ort. Economy in development and maintenance of math-ematical software demands that such development e�ort be leveraged over asmany di�erent computer systems as possible. Given the great diversity of par-allel architectures, this type of portability is attainable to only a limited degree,but machine dependences can at least be isolated.LAPACK is an example of a mathematical software package whose highest-level components are portable, while machine dependences are hidden in lower-level modules. Such a hierarchical approach is probably the closest one cancome to software portability across diverse parallel architectures. And the BLASthat are used so heavily in LAPACK provide a portable, e�cient, and 
exiblestandard for applications programmers.Like portability, scalability demands that a program be reasonably e�ectiveover a wide range of number of processors. Maintaining scalability of parallelalgorithms, and the software libraries implementing them, over a wide rangeof architectural designs and numbers of processors will likely require that thefundamental granularity of computation be adjustable to suit the particular cir-cumstances in which the software may happen to execute. Our approach to thisproblem is block algorithms with adjustable block size. In many cases, however,polyalgorithms3 may be required to deal with the full range of architectures andprocessor multiplicity likely to be available in the future.Scalable parallel architectures of the future are likely to be based on adistributed memory architectural paradigm. In the longer term, progress inhardware development, operating systems, languages, compilers, and commu-nications may make it possible for users to view such distributed architectures(without signi�cant loss of e�ciency) as having a shared memory with a globaladdress space. For the near term, however, the distributed nature of the under-lying hardware will continue to be visible at the programming level; therefore,e�cient procedures for explicit communication will continue to be necessary.Given this fact, standards for basic message passing (send/receive), as well ashigher-level communication constructs (global summation, broadcast, etc.), be-come essential to the development of scalable libraries that have any degree of3In a polyalgorithm the actual algorithm used depends on the computing environment andthe input data. The optimal algorithm in a particular instance is automatically selected atruntime. 12



portability. In addition to standardizing general communication primitives, itmay also be advantageous to establish standards for problem-speci�c constructsin commonly occurring areas such as linear algebra.The BLACS (Basic Linear Algebra Communication Subprograms) [16, 22] isa package that provides the same ease of use and portability for MIMD message-passing linear algebra communication that the BLAS [17, 18, 46] provide forlinear algebra computation. Therefore, we recommend that future softwarefor dense linear algebra on MIMD platforms consist of calls to the BLAS forcomputation and calls to the BLACS for communication. Since both packageswill have been optimized for a particular platform, good performance should beachieved with relatively little e�ort. Also, since both packages will be availableon a wide variety of machines, code modi�cations required to change platformsshould be minimal.4.3 The BLAS as the Key to PortabilityAt least three factors a�ect the performance of compilable code.1. Vectorization/Cache Reuse. Designing vectorizable algorithms in lin-ear algebra is usually straightforward. Indeed, for many computationsthere are several variants, all vectorizable, but with di�erent character-istics in performance (see, for example, [15]). Linear algebra algorithmscan approach the peak performance of many machines|principally be-cause peak performance depends on some form of chaining of vector ad-dition and multiplication operations or cache reuse, and this is just whatthe algorithms require. However, when the algorithms are realized instraightforward Fortran77 or C code, the performance may fall well shortof the expected level, usually because Fortran compilers fail to minimizethe number of memory references|that is, the number of vector load andstore operations or e�ectively reuse cache.2. Data movement. What often limits the actual performance of a vec-tor, or scalar, 
oating-point unit is the rate of transfer of data betweendi�erent levels of memory in the machine. Examples include the transferof vector operands in and out of vector registers, the transfer of scalaroperands in and out of a high-speed, the movement of data between mainmemory and a high-speed cache or local memory, paging between actualmemory and disk storage in a virtual memory system, and interprocessorcommunication on a distributed memory concurrent computer.3. Parallelism. The nested loop structure of most linear algebra algorithmso�ers considerable scope for loop-based parallelism. This is the principaltype of parallelism that LAPACK and ScaLAPACK presently aim to ex-ploit. On shared memory concurrent computers, this type of parallelismcan sometimes be generated automatically by a compiler, but often re-quires the insertion of compiler directives. On distributed memory con-current computers, data must be moved between processors. This is usu-13



Table 2: Speed in M
op/s of Level 2 and Level 3 BLAS operations on a CRAYC90 (all matrices are of order 1000; U is upper triangular)Number of processors: 1 2 4 8 16Level 2: y  �Ax+ �y 899 1780 3491 6783 11207Level 3: C  �AB + �C 900 1800 3600 7199 14282Level 2: x Ux 852 1620 3063 5554 6953Level 3: B  UB 900 1800 3574 7147 13281Level 2: x U�1x 802 1065 1452 1697 1558Level 3: B  U�1B 896 1792 3578 7155 14009ally done by explicit calls to message passing routines, although parallellanguage extensions such as Coherent Parallel C [30] and Split-C [13] dothe message passing implicitly.These issues can be controlled, while obtaining the levels of performancethat machines can o�er, through use of the BLAS, introduced in section 2.1.The Level 1 BLAS are used in LAPACK, but for convenience rather thanfor performance: they perform an insigni�cant fraction of the computation, andthey cannot achieve high e�ciency on most modern supercomputers. Also, theoverhead entailed in calling the BLAS reduces the e�ciency of the code. Thisreduction is negligible for large matrices, but it can be quite signi�cant for smallmatrices. Fortunately, the level 1 BLAS can be removed from the smaller, morefrequently used LAPACK codes in a short editing session.The Level 2 BLAS can achieve near-peak performance on many vector pro-cessors, such as a single processor of a CRAY X-MP or Y-MP, or Convex C-2machine. However, on other vector processors such as a CRAY-2 or an IBM3090 VF, the performance of the Level 2 BLAS is limited by the rate of datamovement between di�erent levels of memory.The Level 3 BLAS overcome this limitation. This third level of BLAS per-forms O(n3) 
oating-point operations on O(n2) data, whereas the Level 2 BLASperform only O(n2) operations on O(n2) data. The Level 3 BLAS also allowus to exploit parallelism in a way that is transparent to the software that callsthem. While the Level 2 BLAS o�er some scope for exploiting parallelism,greater scope is provided by the Level 3 BLAS, as Table 2 illustrates.The BLAS can provide portable high performance through being a standardthat is available on many platforms. Ideally, the computer manufacturer hasprovided an assembly-coded BLAS tuned for that particular architecture, butthere is a standard implementation available that can simply be compiled andlinked. Using this standard BLAS may improve the e�ciency of programs whenthey are run on nonoptimizing compilers. This is because doubly subscripted14



array references in the inner loop of the algorithm are replaced by singly sub-scripted array references in the appropriate BLAS. The e�ect can be seen formatrices of quite small order, and for large orders the savings are quite signi�-cant.4.4 Overview of dense linear algebra librariesOver the past twenty-�ve years, we have has been directly involved in the de-velopment of several important packages of dense linear algebra software: EIS-PACK, LINPACK, LAPACK, and the BLAS. In addition, we are currentlyinvolved in the development of ScaLAPACK, a scalable version of LAPACKfor distributed memory concurrent computers. In this section, we give a briefreview of these packages|their history, their advantages, and their limitationson high-performance computers.4.4.1 EISPACKEISPACK is a collection of Fortran subroutines that compute the eigenvaluesand eigenvectors of nine classes of matrices: complex general, complex Her-mitian, real general, real symmetric, real symmetric banded, real symmetrictridiagonal, special real tridiagonal, generalized real, and generalized real sym-metric matrices. In addition, two routines are included that use singular valuedecomposition to solve certain least-squares problems.EISPACK is primarily based on a collection of Algol procedures developedin the 1960s and collected by J. H. Wilkinson and C. Reinsch in a volumeentitled Linear Algebra in the Handbook for Automatic Computation [64] series.This volume was not designed to cover every possible method of solution; rather,algorithms were chosen on the basis of their generality, elegance, accuracy, speed,or economy of storage.Since the release of EISPACK in 1972, over ten thousand copies of the col-lection have been distributed worldwide.4.4.2 LINPACKLINPACK is a collection of Fortran subroutines that analyze and solve linearequations and linear least-squares problems. The package solves linear systemswhose matrices are general, banded, symmetric inde�nite, symmetric positivede�nite, triangular, and tridiagonal square. In addition, the package computesthe QR and singular value decompositions of rectangular matrices and appliesthem to least-squares problems.LINPACK is organized around four matrix factorizations: LU factorization,pivoted Cholesky factorization, QR factorization, and singular value decompo-sition. The term LU factorization is used here in a very general sense to meanthe factorization of a square matrix into a lower triangular part and an uppertriangular part, perhaps with pivoting. These factorizations will be treated atgreater length later, when the actual LINPACK subroutines are discussed. But15



�rst a digression on organization and factors in
uencing LINPACK's e�ciencyis necessary.LINPACK uses column-oriented algorithms to increase e�ciency by preserv-ing locality of reference. By column orientation we mean that the LINPACKcodes always reference arrays down columns, not across rows. This works be-cause Fortran stores arrays in column major order. This means that as oneproceeds down a column of an array, the memory references proceed sequen-tially in memory Thus, if a program references an item in a particular block,the next reference is likely to be in the same block. See further section 3.1.1.LINPACK uses the Level 1 BLAS; see section 4.3.4.4.3 LAPACKLAPACK [14] provides routines for solving systems of simultaneous linear equa-tions, least-squares solutions of linear systems of equations, eigenvalue prob-lems, and singular value problems. The associated matrix factorizations (LU,Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are relatedcomputations such as reordering of the Schur factorizations and estimating con-dition numbers. Dense and banded matrices are handled, but not general sparsematrices. In all areas, similar functionality is provided for real and complex ma-trices, in both single and double precision.The original goal of the LAPACK project was to make the widely usedEISPACK and LINPACK libraries run e�ciently on shared-memory vector andparallel processors. On these machines, LINPACK and EISPACK are ine�-cient because their memory access patterns disregard the multilayered memoryhierarchies of the machines, thereby spending too much time moving data in-stead of doing useful 
oating-point operations. LAPACK addresses this problemby reorganizing the algorithms to use block matrix operations, such as matrixmultiplication, in the innermost loops [2, 14]. These block operations can beoptimized for each architecture to account for the memory hierarchy [1], andso provide a transportable way to achieve high e�ciency on diverse modernmachines. Here we use the term \transportable" instead of \portable" because,for fastest possible performance, LAPACK requires that highly optimized blockmatrix operations be already implemented on each machine. In other words,the correctness of the code is portable, but high performance is not|if we limitourselves to a single Fortran source code.LAPACK can be regarded as a successor to LINPACK and EISPACK. Ithas virtually all the capabilities of these two packages and much more besides.LAPACK improves on LINPACK and EISPACK in four main respects: speed,accuracy, robustness and functionality. While LINPACK and EISPACK arebased on the vector operation kernels of the Level 1 BLAS, LAPACK was de-signed at the outset to exploit the Level 3 BLAS |a set of speci�cations forFortran subprograms that do various types of matrix multiplication and thesolution of triangular systems with multiple right-hand sides. Because of thecoarse granularity of the Level 3 BLAS operations, their use tends to promotehigh e�ciency on many high-performance computers, particularly if specially16



coded implementations are provided by the manufacturer.LAPACK is designed to give high e�ciency on vector processors, high-performance \superscalar" workstations, and shared memory multiprocessors.LAPACK in its present form is less likely to give good performance on othertypes of parallel architectures (for example, massively parallel SIMD machines,or MIMD distributed memory machines), but the ScaLAPACK project, de-scribed in Section 4.4.4, is intended to adapt LAPACK to these new architec-tures. LAPACK can also be used satisfactorily on all types of scalar machines(PCs, workstations, mainframes).LAPACK, like LINPACK, provides LU and Cholesky factorizations of bandmatrices. The LINPACK algorithms can easily be restructured to use Level2 BLAS, though restructuring has little e�ect on performance for matrices ofvery narrow bandwidth. It is also possible to use Level 3 BLAS, at the price ofdoing some extra work with zero elements outside the band [20]. This processbecomes worthwhile for large matrices and semi-bandwidth greater than 100 orso.4.4.4 ScaLAPACKThe ScaLAPACK software library extends the LAPACK library to run scal-ably on MIMD, distributed memory, concurrent computers [10, 11]. For suchmachines the memory hierarchy includes the o�-processor memory of other pro-cessors, in addition to the hierarchy of registers, cache, and local memory oneach processor. Like LAPACK, the ScaLAPACK routines are based on block-partitioned algorithms in order to minimize the frequency of data movementbetween di�erent levels of the memory hierarchy. The fundamental buildingblocks of the ScaLAPACK library are distributed memory versions of the Level2 and Level 3 BLAS, and a set of Basic Linear Algebra Communication Sub-programs (BLACS) [16, 22] for communication tasks that arise frequently inparallel linear algebra computations. In the ScaLAPACK routines, all interpro-cessor communication occurs within the distributed BLAS and the BLACS, sothe source code of the top software layer of ScaLAPACK looks very similar tothat of LAPACK.We envisage a number of user interfaces to ScaLAPACK. Initially, the inter-face will be similar to that of LAPACK, with some additional arguments passedto each routine to specify the data layout. Once this is in place, we intendto modify the interface so the arguments to each ScaLAPACK routine are thesame as in LAPACK. This will require information about the data distribu-tion of each matrix and vector to be hidden from the user. This may be doneby means of a ScaLAPACK initialization routine. This interface will be fullycompatible with LAPACK. Provided \dummy" versions of the ScaLAPACKinitialization routine and the BLACS are added to LAPACK, there will be nodistinction between LAPACK and ScaLAPACK at the application level, thougheach will link to di�erent versions of the BLAS and BLACS. Following on fromthis, we will experiment with object-based interfaces for LAPACK and ScaLA-PACK, with the goal of developing interfaces compatible with Fortran 90 [10],17



and C++ [21].5 Future Research Directions in Dense Algo-rithmsTraditionally, large, general-purpose mathematical software libraries have re-quired users to write their own programs that call library routines to solve spe-ci�c subproblems that arise during a computation. Adapted to a shared-memoryparallel environment, this conventional interface still o�ers some potential forhiding underlying complexity. For example, the LAPACK project incorporatesparallelism in the Level 3 BLAS, where it is not directly visible to the user.But when going from shared-memory systems to the more readily scalabledistributed memory systems, the complexity of the distributed data structuresrequired is more di�cult to hide from the user. Not only must the problemdecomposition and data layout be speci�ed, but di�erent phases of the user'sproblem may require transformations between di�erent distributed data struc-tures.These de�ciencies in the conventional user interface have prompted extensivediscussion of alternative approaches for scalable parallel software libraries of thefuture. Possibilities include:1. Traditional function library (i.e., minimum possible change to the statusquo in going from serial to parallel environment). This will allow one toprotect the programming investment that has been made.2. Reactive servers on the network. A user would be able to send a com-putational problem to a server that was specialized in dealing with theproblem. This �ts well with the concepts of a networked, heterogeneouscomputing environment with various specialized hardware resources (oreven the heterogeneous partitioning of a single homogeneous parallel ma-chine).3. General interactive environments like Matlab or Mathematica, perhapswith \expert" drivers (i.e., knowledge-based systems). With the growingpopularity of the many integrated packages based on this idea, this ap-proach would provide an interactive, graphical interface for specifying andsolving scienti�c problems. Both the algorithms and data structures arehidden from the user, because the package itself is responsible for stor-ing and retrieving the problem data in an e�cient, distributed manner.In a heterogeneous networked environment, such interfaces could provideseamless access to computational engines that would be invoked selectivelyfor di�erent parts of the user's computation according to which machineis most appropriate for a particular subproblem.4. Domain-speci�c problem solving environments, such as those for structuralanalysis. Environments like Matlab and Mathematica have proven to be18



especially attractive for rapid prototyping of new algorithms and systemsthat may subsequently be implemented in a more customized manner forhigher performance.5. Reusable templates (i.e., users adapt \source code" to their particularapplications). A template is a description of a general algorithm ratherthan the executable object code or the source code more commonly foundin a conventional software library. Nevertheless, although templates aregeneral descriptions of key data structures, they o�er whatever degree ofcustomization the user may desire.Novel user interfaces that hide the complexity of scalable parallelism willrequire new concepts and mechanisms for representing scienti�c computationalproblems and for specifying how those problems relate to each other. Very highlevel languages and systems, perhaps graphically based, not only would facili-tate the use of mathematical software from the user's point of view, but alsowould help to automate the determination of e�ective partitioning, mapping,granularity, data structures, etc. However, new concepts in problem speci�-cation and representation may also require new mathematical research on theanalytic, algebraic, and topological properties of problems (e.g., existence anduniqueness).We have already begun work on developing such templates for sparse matrixcomputations. Future work will focus on extending the use of templates to densematrix computations.We hope the insight we gained from our work will in
uence future develop-ers of hardware, compilers and systems software so that they provide tools tofacilitate development of high quality portable numerical software.The EISPACK, LINPACK, and LAPACK linear algebra libraries are in thepublic domain, and are available from netlib. For example, for more informa-tion on how to obtain LAPACK, send the following one-line email message tonetlib@ornl.gov:send index from lapackor visit the web site at http://www.netlib.org/lapack/. Information for EIS-PACK, LINPACK, and ScaLAPACK can be similarly obtained.6 Sparse Linear Algebra Methods6.1 Origin of sparse linear systemsThe most common source of sparse linear systems is the numerical solution ofpartial di�erential equations. Many physical problems, such as 
uid 
ow orelasticity, can be described by partial di�erential equations. These are implicitdescriptions of a physical model, describing some internal relation such as stressforces. In order to arrive at an explicit description of the shape of the object orthe temperature distribution, we need to solve the PDE, and for this we neednumerical methods. 19



6.1.1 Discretised partial di�erential equationsSeveral methods for the numerical solution of PDEs exist, the most commonones being the methods of �nite elements, �nite di�erences, and �nite volumes.A common feature of these is that they identify discrete points in the physicalobject, and give a set of equations relating these points.Typically, only points that are physically close together are related to eachother in this way. This gives a matrix structure with very few nonzero elementsper row, and the nonzeros are often con�ned to a `band' in the matrix.6.1.2 Sparse matrix structureMatrices from discretised partial di�erential equations contain so many zero el-ements that it pays to �nd a storage structure that avoids storing these zeros.The resulting memory savings, however, are o�set by an increase in program-ming complexity, and by descreased e�ciency of even simple operations such asthe matrix vector product.More complicated operations, such as solving a linear system, with such asparse matrix present a next level of complication, as both the inverse and theLU factorisation of a sparse matrix are not as sparse, thus needing considerablymore storage. Speci�cally, the inverse of the type of sparse matrix we areconsidering is a full matrix, and factoring such a sparse matrix �lls in the bandcompletely.Example: central di�erences in d dimensions, n points per line, matrix sizeN = nd, bandwidth q = nd�1 in natural ordering, number of nonzero � nd,number of matrix elements N2 = n2d, number of elements in factorisationN1+(d�1)=d.6.2 Basic elements in sparse linear algebra methodsMethods for sparse systems use, like those for dense systems, vector-vector,matrix-vector, and matrix-matrix operations. However, there are some impor-tant di�erences.For iterative methods, discussed in section 8, there are almost no matrix-matrix operations. See [43] for an exception. Since most modern architecturesprefer these Level 3 operations, the performance of iterative methods will belimited from the outset.An even more serious objection is that the sparsity of the matrix implies thatindirect addressing is used for retrieving elements. For example, in the popularrow-compressed matrix storage format, the matrix-vector multiplication lookslikefor i = 1 : : : np pointer to row ifor j = 1; niyi  yi + a(p+ j)x(c(p+ j)) 20



where ni is the number of nonzeros in row i, and p(�) is an array of columnindices. A number of such algorithms for several sparse data formats are givenin [6].Direct methods can have a BLAS 3 component if they are a type of dissectionmethod. However, in a given sparse problem, the more dense the matrices are,the smaller they are on average. They are also not general full matrices, butonly banded. Thus we don't expect very high performance on such methodseither.7 Direct solution methodsFor the solution of a linear system one needs to factor the coe�cient matrix.Any direct method is a variant of Gaussian elimination. As remarked above,for a sparse matrix, this �lls in the band in which the nonzero elements arecontained. In order to minimise the storage needed for the factorisation, re-search has focused on �nding suitable orderings of the matrix. Re-ordering theequations by a symmetric permutation of the matrix does not change the nu-merical properties of the system in many cases, and it can potentially give largesavings in storage. In general, direct methods do not make use of the numericalproperties of the linear system, and thus their execution time is a�ected onlyby the structural properties of the input matrix.7.1 Matrix graph theoryThe most convenient way of talking about matrix orderings or permutationsis to consider the matrix `graph' [55]. We introduce a node for every physicalvariable, and nodes i and j are connected in the graph if the (i; j) element of thematrix is nonzero. A symmetric permutation of the matrix then correspondsto a numbering of the nodes, while the connections stay the same. With thesepermutations, one hopes to reduce the `bandwidth' of the matrix, and therebythe amount of �ll generated by the factorisation.7.2 Cuthill-McKee orderingA popular ordering strategy is the Cuthill-McKee ordering, which �nds levelsor wavefronts in the matrix graph. This algorithm is easily described:1. Take any node as starting point, and call that `level 0'.2. Now successively take all nodes connected to the previous level, and groupthem into the next level.3. Iterate this until all nodes are grouped into some level; the numberinginside each level is of secondary importance.This ordering strategy often gives a smaller bandwidth than the naturalordering, and there are further advantages to having a level structure, e.g.,21



for out-of-core solution or for parallel processing. Often, one uses the `reverseCuthill-McKee' orderings [50].7.3 Minimum degreeAn explicit reduction of bandwidth is e�ected by the minimum degree ordering,which at any point in the factorisation chooses the variable with the smallestnumber of connections. Considering the size of the resulting �ll-in is used as atie-breaker.7.4 Nested dissectionInstead of trying to minimise �ll-in by reducing the bandwidth, one could trya direct approach. The `nested dissection' ordering recursively splits the ma-trix graph in two, thus separating it into disjoint subgraphs. Somewhat moreprecisely, given a graph, this algorithm relies on the existence of a `separator':a set of nodes such that the other nodes fall into two mutually unconnected sub-graphs. The �ll from �rst factoring these subgraphs, followed by a factorisationof the separator, is likely to be lower than for other orderings.It can be shown that for PDEs in two space dimensions this method hasa storage requirement that is within a log-factor of that for the matrix itself,that is, very close to optimal [33]. This proof is easy for PDEs on rectangulargrids, but with enough graph theory it can be generalised [49, 48]. However, forproblems in three space dimensions, the nested dissection method is no longeroptimal.An advantage of dissection-type methods is that they lead to large numbersof uncoupled matrix problems. Thus, to an extent, parallelisation of such meth-ods is easy. However, the higher levels in the tree quickly have fewer nodes thanthe number of available processors. In addition to this, they are also the largersubproblems in the algorithm, thereby complicating the parallelisation of themethod.Another practical issue is the choice of the separator set. In a model casethis is trivial, but in practice, and in particular in parallel, this is a seriousproblem, since the balancing of the two resulting subgraphs depends on thischoice. Recently, so-called `2nd eigenvector methods' have become popular forthis [56].8 Iterative solution methodsDirect methods, as sketched above, have some pleasant properties. Foremostis the fact that their time to solution is predictable, either a priori, or afterdetermining the matrix ordering. This is due to the fact that the methoddoes not rely on numerical properties of the coe�cient matrix, but only on itsstructure. On the other hand, the amount of �ll can be substantial, and with22



it the execution time. For large scale applications, the storage requirements fora realistic size problem can simply be prohibitive.Iterative methods have far lower storage demands. Typically, the storage,and the cost per iteration with it, is of the order of the matrix storage. However,the number of iterations strongly depends on properties of the linear system,and is at best known up to an order estimate; for di�cult problems the methodsmay not even converge due to accumulated round-o� errors.8.1 Basic iteration procedureIn its most informal sense, an iterative method in each iteration locates an ap-proximation to the solution of the problem, measures the error between theapproximation and the true solution, and based on the error measurement im-proves on the approximation by constructing a next iterate. This process repeatsuntil the error measurement is deemed small enough.8.2 Stationary iterative methodsThe simplest iterative methods are the `stationary iterative methods'. They arebased on �nding a matrix M that is, in some sense, `close' to the coe�cientmatrix A. Instead of solving Ax = b, which is deemed computationally infeasi-ble, we solve Mx1 = b. The true measure of how well x1 approximates x is theerror e1 = x1 � x, but, since we do not know the true solution x, this quantityis not computable. Instead, we look at the `residual': r1 = Ae1 = Ax1 � b,which is a computable quantity. One easily sees that the true solution satis�esx = A�1b = x1�A�1r1, so, replacing A�1 with M�1 in this relation, we de�nex2 = x1 �M�1r1.Stationary methods are easily analysed: we �nd that ri ! 0 if all eigenvalues� = �(I�AM�1) satisfy j�j < 1. For certain classes of A and M this inequalityis automatically satis�ed [36, 61].8.3 Krylov space methodsThe most popular class of iterative methods nowadays is that of `Krylov spacemethods'. The basic idea there is to construct the residuals such that the n-thresidual rn is obtained from the �rst by multiplication by some polynomial inthe coe�cient matrix A, that is,rn = Pn�1(A)r1:The properties of the method then follow from the properties of the actualpolynomial [3, 7, 9].Most often, these iteration polynomials are chosen such that the residualsare orthogonal under some inner product. From this, one usually obtains someminimisation property, though not necessarily a minimisation of the error.Since the iteration polynomials are of increasing degree, it is easy to seethat the main operation in each iteration is one matrix-vector multiplication.23



Additionally, some vector operations, including inner products in the orthogo-nalisation step, are needed.8.3.1 The issue of symmetryKrylov method residuals can be shown to satisfy the equationrn 2 spanfArn�1; rn�1; : : : ; r1g:This brings up the question whether all rn�1; : : : ; r1g need to be stored in orderto compute rn. The answer is that this depends on the symmetry of the co-e�cient matrix. For a symmetric problem, the rn vectors satisfy a three-termrecurrence. This was the original Conjugate Gradient method [40].For nonsymmetric problems, on the other hand, no short recurrences canexist [29], and therefore, all previous residuals need to be stored. Some of thesemethods are OrthoDir and OrthoRes [65].If the requirement of orthogonality is relaxed, one can derive short-recurrencemethods for nonsymmetric problems [31]. In the Biconjugate Gradient method,two sequences frng and fsng are derived that are mutually orthogonal, and thatsatisfy three-term recurrences.A disadvantage of this latter method is that it needs application of thetranspose of the coe�cient matrix. In environments where the matrix is onlyoperatively de�ned, this may exclude this method from consideration. Recentlydeveloped methods, mostly based on the work of [59, 60], obviate this consider-ation.8.3.2 True minimisationThe methods mentioned so far minimise the error (over the subspace generated)in some matrix-related norm, but not in the Euclidean norm. We can e�ect atrue minimisation by collecting the residuals generated so far, and �nding aminimising convex combination. This leads to one of the most popular methodsnowadays: GMRES [58]. It will always generate the optimal iterate, but for thisit requires storage of all previous residuals. In practice, truncated or restartedversion of GMRES are popular.8.4 PreconditionersThe matrixM that appeared in the section on stationary iterative methods canplay a role in Krylov space methods too. There, it is called a `preconditioner',and it acts to improve spectral properties of the coe�cient matrix that determinethe convergence speed of the method. In a slight simpli�cation, one might saythat we replace the system Ax = b by(AM�1)(Mx) = b:(Additionally, the inner product is typically changed.) It is generally recognisedthat a good preconditioner is crucial to the performance of an iterative method.24



The requirements on a preconditioner are that it should be easy to construct,a system Mx = b should be simple to solve, and in some sense M shouldbe an approximation to A. These requirements need to be balanced: a moreaccurate preconditioner is usually harder to construct and more costly to apply,so any decrease in the number iterations has to be set against a longer time periteration, plus an increased setup phase.The holy grail of preconditioners is �nding an `optimal' preconditioner: onefor which the number of operations for applying it is of the order of the numberof variables, while the resulting number of iterations is bounded in the problemsize. There are very few optimal preconditioners.8.4.1 Simple preconditionersSome preconditioners need no construction at all. For instance, the Jacobipreconditioner consists of simply the matrix diagonal DA. Since in PDE ap-plications the largest elements are on the diagonal, one expects some degree ofaccuracy from this. Using not just the diagonal, but the whole lower triangularpart DA +LA of the coe�cient matrix, an even more accurate method results.Since this triangular matrix is nonsymmetric, it is usually balanced with theupper triangular part as (DA + LA)D�1A (DA + UA).8.4.2 Incomplete factorisationsA successful strategy for preconditioners results from mimicking direct methods,but applying some approximation process to them. Thus, the so-called `incom-plete factorisation' methods ignore �ll elements in the course of the Gaussianelimination process. Two strategies are to ignore elements in �xed positions,or to drop elements that are deemed small enough to be negligible. The aim ishere to preserve at least some of the sparsity of the coe�cient matrix in the fac-torisation, while giving something that is close enough to the full factorisation.Incomplete factorisations can be very e�ective, but there are a few practicalproblems. For the class of M-matrices, these methods are well-de�ned [52], butfor other, even fairly common classes of matrices, there is a possibility that thealgorithm breaks down [42, 45, 51].Also, factorisations are inherently recursive, and coupled with the sparse-ness of the incomplete factorisation, this gives very limited parallelism in thealgorithm using a natural ordering of the unknowns. Di�erent orderings maybe more parallel, but take more iterations [25, 27, 43].8.4.3 Analytically inspired preconditionersIn recent years, a number of preconditioners have gained in popularity that aremore directly inspired by the continuous problem. First of all, for a matrix froman elliptic PDE, one can use a so-called `fast solver' as preconditioner [12, 28, 63].A particularly popular class of preconditioners based on the continuous prob-lem, is that of `domain decomposition' methods. If the continuous problem was25



elliptic, then decomposing the domain into simply connected pieces leads toelliptic problems on these subdomains, tied together by internal boundary con-ditions of some sort.For instance, in the Schur complement domain decomposition method [8],thin strips of variables are assigned a function as interface region, and the orig-inal problem reduces to fully independent problems on the subdomains, con-nected by a system on the interface that is both smaller and better conditioned,but more dense, than the original one. While the subdomains can trivially beexecuted in parallel, the interface system poses considerable problems.Choosing overlapping instead of separated subdomains leads to the class ofSchwarz methods [47]. The original Schwarz method on two domains proposedsolving one subdomain, deriving interface conditions from it for the other sub-domain, and solving the system there. Repetition of this process can be shownto converge. In a more parallel variant of this method, all subdomains solvetheir system simultaneously, and the solutions on the overlap regions are addedtogether.Multilevel methods do not operate by decomposing the domain. Rather, theywork on a sequence of nested discretisation, solving the coarser ones as a startingpoint for solving the �ner levels. Under certain conditions such methods can beshown to be close to optimal [4, 35]. However, they require explicit knowledge ofthe operator and boundary conditions. For this reason, people have investigatedalgebraic variants [5, 57]. In both cases, these methods can be parallelised bydistributing each level over the processors, but this may not be trivial.9 Libraries and standards in sparse methodsUnlike in dense methods, there are few standards for iterative methods. Mostof this is due to the fact that sparse storage is more complicated, admitting ofmore variation, and therefore less standardised. Whereas the (dense) BLAS hasbeen accepted for a long time, sparse BLAS is not more than a proposal underresearch.9.1 Storage formatsAs is apparent from the matrix-vector example in section 6.2, storage formatsfor sparse matrices include not just the matrix elements, but pointer informationdescribing where the nonzero elements are placed in the matrix. A few storageformats are in common use (for more details see [6]):Aij format In the `Aij' format, three arrays of the same length are allocated:one containing the matrix elements, and the other two containing thei and j coordinates of these elements. No particular ordering of the ele-ments is implied.Row/column-compressed In the row-compressed format one array of inte-gers is allocated in addition to the matrix element, giving the column26



indices of the nonzero elements. Since all elements in the same row arestored contiguously, a second, smaller, array is needed giving the startpoints of the rows in the two larger arrays.Compressed diagonal If the nonzero elements of the matrix are located,roughly or exactly, along subdiagonals, one could use contiguous stor-age for these diagonals. There are several diagonal storage formats. Inthe simplest, describing a contiguous block of subdiagonals, only the arrayof matrix elements is needed; two integers are su�cient to describe whichdiagonals have been stored.There exist blocked versions of these formats, for matrices that can be parti-tioned into small square subblocks.9.2 Sparse librariesSince sparse formats are more complicated than dense matrix storage, sparselibraries have an added level of complexity. This holds even more so in theparallel case, where additional indexing information is needed to specify whichmatrix elements are on which processor.There are two fundamentally di�erent approaches for handling this com-plexity. Some sparse libraries require the user to set up the matrix and supplyit to the library, while all handling is performed by the library. This requiresthe user to store data in a format dictated by the library, which might involveconsiderable work.On the other hand, the library might do even the matrix setup internally,hiding all data from the user. This gives total freedom to the user, but itrequires the library to supply su�cient access functions so that the user canperform certain matrix operations, even while not having access to the objectitself.10 ConclusionThe sparse linear systems that result from partial di�erential equations needvery di�erent techniques from those used for dense matrices. While direct meth-ods have the virtue of reliability, they also take copious amounts of space andtime. Iterative methods, of one type or another, are considerably more frugal intheir space demands, but on di�cult problems their convergence may be slow,and is not even guaranteed.AcknowledgmentsThis research was performed in part using the Intel Touchstone Delta Systemoperated by the California Institute of Technology on behalf of the ConcurrentSupercomputing Consortium. Access to this facility was provided through theCenter for Research on Parallel Computing.27
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