Standardized Numerical Linear Algebra Software

Jack J. Dongarra
Victor Eijkhout

* Department of Computer Science
University of Tennessee
107 Ayres Hall
Knoxville, TN 37996-1301

§ Mathematical Sciences Section
Oak Ridge National Laboratory
P. O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

Standardized Numerical Linear Algebra Software

Jack J. Dongarra
Victor Eijkhout

1 Introduction

The increasing availability of advanced-architecture computers has a significant
effect on all spheres of scientific computation, including algorithm research and
software development in numerical linear algebra. Linear algebra—in particular,
the solution of linear systems of equations—Ilies at the heart of most calculations
in scientific computing. This chapter discusses some of the recent developments
in linear algebra designed to exploit these advanced-architecture computers.
We discuss two broad classes of algorithms: those for dense, and those for
sparse matrices. A matrix is called sparse if it has a substantial number of zero
elements, making specialized storage and algorithms necessary.

Much of the work in developing linear algebra software for advanced-architecture
computers is motivated by the need to solve large problems on the fastest com-
puters available. In this chapter, we focus on four basic issues: (1) the moti-
vation for the work; (2) the development of standards for use in linear algebra
and the building blocks for libraries; (3) aspects of algorithm design and parallel
implementation; and (4) future directions for research.

As representative examples of dense matrix routines, we will consider the
Cholesky and LU factorizations, and these will be used to highlight the most
important factors that must be considered in designing linear algebra software
for advanced-architecture computers. We use these factorization routines for il-
lustrative purposes not only because they are relatively simple, but also because
of their importance in several scientific and engineering applications that make
use of boundary element methods. These applications include electromagnetic
scattering and computational fluid dynamics problems, as discussed in more
detail in Section 2.1.2.

For the past 15 years or so, there has been a great deal of activity in the
area of algorithms and software for solving linear algebra problems. The goal
of achieving high performance on codes that are portable across platforms has
largely been realized by the identification of linear algebra kernels, the Basic
Linear Algebra Subprograms (BLAS). We will discuss the Eispack, Linpack,
Lapack, and Scalapack libraries which are expressed in successive levels of the
BLAS.

The key insight of our approach to designing linear algebra algorithms for
advanced architecture computers is that the frequency with which data are
moved between different levels of the memory hierarchy must be minimized in
order to attain high performance. Thus, our main algorithmic approach for

exploiting both vectorization and parallelism in our implementations is the use
of block-partitioned algorithms, particularly in conjunction with highly-tuned
kernels for performing matrix-vector and matrix-matrix operations (the Level 2
and 3 BLAS).

2 Dense Linear Algebra Algorithms

2.1 Overview of Dense Algorithms
Common operations involving dense matrices are the solution of linear systems
Az = b,
the least squares solution of over- or underdetermined systems
min|| Az — b

and the computation of eigenvalues and -vectors
Az = Az.

Although these problems are formulated as matrix-vector equations, their so-
lution involves a definite matrix-matrix component. For instance, in order to
solve a linear system, the coefficient matrix is first factored as

A=LU

(or A = U'U in the case of symmetry) where L and U are lower and upper

triangular matrices respectively. It is a common feature of these matrix-matrix

operations that they take, on a matrix of size n X n, a number of operations

proportional to n3, a factor n more than the number of data elements involved.
Thus we are led to identify three levels of linear algebra operations:

e Level 1: vector-vector operations such as the update § < ¥ + aZ and the
inner product d = Z'§j. These operations involve (for vectors of length n)
O(n) data and O(n) operations.

e Level 2: matrix-vector operations such as the matrix-vector product y =
Az. These involve O(n?) operations on O(n?) data.

e Level 3: matrix-matrix operations such as the matrix-matrix product C' =
AB. These involve O(n?) operations on O(n?) data.

These three levels of operations have been realized in a software standards known
as the Basic Linear Algebra Subprograms (BLAS) [17, 18, 46]. Although BLAS
routines are freely available on the net, many computer vendors supply a tuned,
often assembly-coded, BLAS library optimised for their particular architecture.
See also section 4.3.

The relation between the number of operations and the amount of data
is crucial for the performance of the algorithm. We discuss this in detail in
section 3.1.

2.1.1 Loop rearranging

The operations of BLAS Levels 2 and 3 can be implemented using doubly and
triply nested loops respectively. With simply modifications, this means that for
Level 2 each algorithms has two, and for Level 3 six different implementations.
For instance, solving a lower triangular system Lz = y is mostly written

fori=1...n

t=20
forj=1...i—1
t(—t+€,'j$j

x=10;"(y; — 1)
but can also be written as

forj=1...n
-1
vj = Lj;
fori=j+1...n
Yi < yi — lijz;

(The latter implementation overwrites the right hand side vector y, but this can
be eliminated.)

While the two implementations are equivalent in terms of numbers of oper-
ations, there may be substantial differences in performance due to architectural
considerations. We note, for instance, that the inner loop in the first implemen-
tation uses a row of L, whereas the innner loop in the second traverses a column.
Since matrices are usually stored with either rows or columns in contiguous lo-
cations, column storage the historical default inherited from the FORTRAN
programming language, the performance of the two can be radically different.
We discuss this point further in section 3.1.

2.1.2 Uses of LU Factorization in Science and Engineering

A major source of large dense linear systems is problems involving the solution
of boundary integral equations. These are integral equations defined on the
boundary of a region of interest. All examples of practical interest compute
some intermediate quantity on a two-dimensional boundary and then use this
information to compute the final desired quantity in three-dimensional space.
The price one pays for replacing three dimensions with two is that what started
as a sparse problem in O(n?) variables is replaced by a dense problem in O(n?).

Dense systems of linear equations are found in numerous applications, in-
cluding:

e airplane wing design;
e radar cross-section studies;

e flow around ships and other off-shore constructions;

e diffusion of solid bodies in a liquid;
e noise reduction; and
e diffusion of light through small particles.

The electromagnetics community is a major user of dense linear systems
solvers. Of particular interest to this community is the solution of the so-called
radar cross-section problem. In this problem, a signal of fixed frequency bounces
off an object; the goal is to determine the intensity of the reflected signal in all
possible directions. The underlying differential equation may vary, depending
on the specific problem. In the design of stealth aircraft, the principal equation
is the Helmholtz equation. To solve this equation, researchers use the method
of moments [37, 62]. In the case of fluid flow, the problem often involves solving
the Laplace or Poisson equation. Here, the boundary integral solution is known
as the panel method [38, 39], so named from the quadrilaterals that discretize
and approximate a structure such as an airplane. Generally, these methods are
called boundary element methods.

Use of these methods produces a dense linear system of size O(N) by O(N),
where N is the number of boundary points (or panels) being used. It is not
unusual to see size 3N by 3V, because of three physical quantities of interest
at every boundary element.

A typical approach to solving such systems is to use LU factorization. Each
entry of the matrix is computed as an interaction of two boundary elements.
Often, many integrals must be computed. In many instances, the time required
to compute the matrix is considerably larger than the time for solution.

The builders of stealth technology who are interested in radar cross-sections
are using direct Gaussian elimination methods for solving dense linear systems.
These systems are always symmetric and complex, but not Hermitian.

For further information on various methods for solving large dense linear
algebra problems that arise in computational fluid dynamics, see the report by
Alan Edelman [26].

2.2 Block Algorithms and Their Derivation

It is comparatively straightforward to recode many of the dense linear algebra
algorithms so that they use Level 2 BLAS. Indeed, in the simplest cases the same
floating-point operations are done, possibly even in the same order: it is just
a matter of reorganizing the software. To illustrate this point, we consider the
Cholesky factorization algorithm, which factors a symmetric positive definite
matrix as A = UTU. We consider Cholesky factorization because the algorithm
is simple, and no pivoting is required on a positive definite matrix.

Suppose that after j — 1 steps the block Agp in the upper lefthand corner
of A has been factored as Agg = UL Upo. The next row and column of the
factorization can then be computed by writing A = UTU as

AOO bj AOQ Ug;) 0 0 UO() vUj UOQ

- T - T L . T
ajj ¢ = va Ujj OT 0 wuj; wj
Azg U02 w; U22 0 0 U22

where b;, c;, vj, and w; are column vectors of length j — 1, and a;; and u;; are
scalars. Equating coefficients of the j* column, we obtain

_ T
bj = Ugovj
_ T 2
ajj = U Uj +uj;.
Since Upo has already been computed, we can compute v; and uj; from the

equations

Ugvi = b
U,?j = ajj — ’UJT’U]'.

The computation of v; is a triangular system solution, a BLAS Level 2
operation. Thus, a code using this will have a single call replacing a loop of
Level 1 calls or a doubly nested loop of scalar operations.

This change by itself is sufficient to result in large gains in performance on
a number of machines—for example, from 72 to 251 megaflops for a matrix of
order 500 on one processor of a CRAY Y-MP. Since this is 81% of the peak
speed of matrix-matrix multiplication on this processor, we cannot hope to do
very much better by using Level 3 BLAS.

We can, however, restructure the algorithm at a deeper level to exploit the
faster speed of the Level 3 BLAS. This restructuring involves recasting the
algorithm as a block algorithm—that is, an algorithm that operates on blocks
or submatrices of the original matrix.

2.2.1 Deriving a Block Algorithm

To derive a block form of Cholesky factorization, we partition the matrices as
shown in Figure 1, in which the diagonal blocks of A and U are square, but
of differing sizes. We assume that the first block has already been factored as
Ago = UL Uy, and that we now want to determine the second block column
of U consisting of the blocks Uy, and Uy;. Equating submatrices in the second
block of columns, we obtain

Ay = UdUon
An = U()T1U01+U1T1U11-

Hence, since Uy has already been computed, we can compute Uy; as the solution
to the equation

UdbUo1 = Aoy

T

AOO AOl AOZ UOO 0 0 UOO UOl U02
T T T

AOl All A12 UOl Ull 0 0 Ull U12
T T T T T

A02 A12 A22 U 02 U 12 U 22 0 0 U 22

Figure 1: Partitioning of A, U?, and U into blocks. It is assumed that the
first block has already been factored as Aoy = U(%Uoo, and we next want to
determine the block column consisting of Uy; and U;. Note that the diagonal
blocks of A and U are square matrices.

by a call to the Level 3 BLAS routine STRSM; and then we can compute Uy
from

ULUL = A1y — UL Uy,

This involves first updating the symmetric submatrix A;; by a call to the
Level 3 BLAS routine SSYRK, and then computing its Cholesky factorization.
Since Fortran does not allow recursion, a separate routine must be called, using
Level 2 BLAS rather than Level 3. In this way, successive blocks of columns of
U are computed.

But that is not the end of the story, and the code given above is not the
code actually used in the LAPACK routine SPOTRF. We mentioned earlier that
for many linear algebra computations there are several algorithmic variants,
often referred to as i-, j-, and k-variants, according to a convention introduced
in [15, 23] and explored further in [53, 54]. The same is true of the corresponding
block algorithms.

It turns out that the j-variant chosen for LINPACK, and used in the above
examples, is not the fastest on many machines, because it performs most of the
work in solving triangular systems of equations, which can be significantly slower
than matrix-matrix multiplication. The variant actually used in LAPACK is the
i-variant, which relies on matrix-matrix multiplication for most of the work.

Table 1 summarizes the results.

Table 1: Speed (Megaflops) of Cholesky Factorization A = UTU for n = 500

CRAY T-90, | CRAY T-90,

1 proc. 4 proc.
j-variant: LINPACK 376 392
j-variant: using Level 3 BLAS 1222 2306
i-variant: using Level 3 BLAS 1297 3279

3 The influence of computer architecture on per-
formance

3.1 Discussion of architectural features

In section 2.1.1 we noted that for BLAS Levels 2 and 3 several equivalent imple-
mentations of the operations exist. These differ, for instance, in whether they
access a matrix operand by rows or columns in the inner loop. In FORTRAN,
matrices are stored by columns, so accessing a column corresponds to accessing
consecutive memory elements. On the other hand, as one proceeds across a
row, the memory references jump across memory, the length of the jump being
proportional to the length of a column.

We will now give a simplified discussion on the various architectural issues
that influence the choice of algorithm. The following is, of necessity, a simplified
account of the state of affairs for any particular architecture.

At first, we concentrate only on ‘non-blocked’ algorithms. In blocked meth-
ods, discussed in more detail below, every algorithm has two levels on which
we can consider loop arranging: the block level, and the scalar level. Often,
the best arrangement on one level is not the best on the other. The next two
subsections concern themselves with the scalar level.

3.1.1 Using consecutive elements

The decision how to traverse matrix elements should usually be taken so as to use
elements that are consecutive in storage. There are at least three architectural
reasons for this.

page swapping By using consecutive memory elements, instead of ones at
some stride distance of each other, the amount of memory page swapping
is minimized.

memory banks If the processor cycle is faster than the memory cycle, and
memory consists of interleaved banks, consecutive elements will be in dif-
ferent banks. By contrast, taking elements separated a distance equal to
the number of banks, all elements will come from the same bank. This
will reduce the effective performance of the algorithm to the memory speed
instead of the processor speed.

cache lines Processors with a memory cache typically do not bring in single
elements from memory to cache, but move them one ‘cache line’ at a
time. A cache line consists of a small number of consecutive memory
elements. Thus, using consecutive memory storage elements means that
a next element will already be in cache and does not have to be brought
into cache. This cuts down on memory traffic.

Whether consecutive elements correspond to rows or columns in a matrix
depends on the programming language used. In Fortran, columns are stored
consecutively, whereas C has row elements contiguous in memory.

The effects of column orientation are quite dramatic: on systems with virtual
or cache memories, the LINPACK library codes (section 4.4.2), which are writ-
ten in FORTRAN and which are column-oriented, will significantly outperform
FORTRAN codes that are not column-oriented. In the C language, however,
algorithms should be formulated with row-orientation. We note that textbook
examples of matrix algorithms are usually given in a row-oriented manner.

3.1.2 Cache reuse

In many contemporary architectures, memory bandwidth is not enough to keep
the processor working at its peak rate. Therefore, the architecture incorporates
some cache memory, a relatively small store of faster memory. The memory
bandwidth problem is now shifted to bringing the elements into cache, and
this problem can be obviated almost entirely if the algorithm can re-use cache
elements.

Consider for instance a matrix-vector product y = Az. The doubly nested
loop has an inner statement

Yi < Yi + aija;

implying three reads and one write from memory for two operations. If we write
the algorithm as
Ys = T101 + T2l24 + - -

we see that, keeping y in cache! and reusing the elements of z, we only need to
load the column of A, making the asymptotic demand on memory one element
load once z and y have been brought into cache.

3.1.3 Blocking for cache reuse

Above, we saw in the Cholesky example how algorithms can naturally be written
in terms of Level 2 operations. In order to use Level 3 operations, a more drastic
rewrite is needed.

Suppose we want to perform the matrix-matrix multiplication C' = AB,
where all matrices are of size n x n. We divide all matrices in subblocks of

1Since many level-1 caches are write-through, we wouldn’t actually keep y in cache, but
rather keep a number of elements of it in register, and reuse these registers by unrolling the
‘x’ loop.

size k X k, and let for simplicity’s sake k divide n: n = km. Then the triply
nested scalar loop becomes, in one possible rearrangement

fori=1...m
fork=1...m
foryj=1...m
Cij (—Cij+AikBkj

where the inner statement is now a size k£ matrix-matrix multiplication.

If the cache is now large enough three of these smaller matrices, we can keep
C;j and A; in cache?, while successive blocks By are being brought in. The
ratio of memory loads to operations is then (ignoring the loads of the elements
of C' and A, which are amortised) k?/k3, that is, 1/k.

Thus, by blocking the algorithm, and arranging the loops so that blocks
are reused in cache, we can achieve high performance in spite of a low memory
bandwidth.

3.2 Target Architectures

The EISPACK and LINPACK software libraries were designed for supercom-
puters used in the 1970s and early 1980s, such as the CDC-7600, Cyber 205,
and Cray-1. These machines featured multiple functional units pipelined for
good performance [41]. The CDC-7600 was basically a high-performance scalar
computer, while the Cyber 205 and Cray-1 were early vector computers.

The development of LAPACK in the late 1980s was intended to make the
EISPACK and LINPACK libraries run efficiently on shared memory, vector
supercomputers. The ScaLAPACK software library will extend the use of LA-
PACK to distributed memory concurrent supercomputers. The development of
ScaLAPACK began in 1991 and is expected to be completed by the end of 1994.

The underlying concept of both the LAPACK and ScaLAPACK libraries
is the use of block-partitioned algorithms to minimize data movement between
different levels in hierarchical memory. Thus, the ideas discussed in this chapter
for developing a library for dense linear algebra computations are applicable to
any computer with a hierarchical memory that (1) imposes a sufficiently large
startup cost on the movement of data between different levels in the hierarchy,
and for which (2) the cost of a context switch is too great to make fine grain size
multithreading worthwhile. Our target machines are, therefore, medium and
large grain size advanced-architecture computers. These include “traditional”
shared memory, vector supercomputers, such as the Cray C-90 and T-90, and
MIMD distributed memory concurrent supercomputers, such as the SGI Origin
2000, IBM SP, Cray T3E, and HP/Convex Exemplar concurrent systems.

Future advances in compiler and hardware technologies are expected to make
multithreading a viable approach for masking communication costs. Since the
blocks in a block-partitioned algorithm can be regarded as separate threads, our
approach will still be applicable on machines that exploit medium and coarse
grain size multithreading.

2 Again, with a write-through level-1 cache, one would try to keep Cy; in registers.

4 Dense Linear Algebra Libraries

4.1 Requirements on High-Quality, Reusable, Mathemat-
ical Software

In developing a library of high-quality subroutines for dense linear algebra com-
putations the design goals fall into three broad classes:

e performance
e ease-of-use

e range-of-use

4.1.1 Performance

Two important performance metrics are concurrent efficiency and scalability.
We seek good performance characteristics in our algorithms by eliminating, as
much as possible, overhead due to load imbalance, data movement, and algo-
rithm restructuring. The way the data are distributed (or decomposed) over the
memory hierarchy of a computer is of fundamental importance to these factors.
Concurrent efficiency, €, is defined as the concurrent speedup per processor [32],
where the concurrent speedup is the execution time, Ty, for the best sequential
algorithm running on one processor of the concurrent computer, divided by the
execution time, T', of the parallel algorithm running on NN, processors. When
direct methods are used, as in LU factorization, the concurrent efficiency de-
pends on the problem size and the number of processors, so on a given parallel
computer and for a fixed number of processors, the running time should not
vary greatly for problems of the same size. Thus, we may write,

(V. N) = 3 e 1)

P » IVp

where N represents the problem size. In dense linear algebra computations, the
execution time is usually dominated by the floating-point operation count, so
the concurrent efficiency is related to the performance, G, measured in floating-
point operations per second by,

GN,Ny) = ~Z (N, N,) &)
calc

where tca)c is the time for one floating-point operation. For iterative routines,
such as eigensolvers, the number of iterations, and hence the execution time,
depends not only on the problem size, but also on other characteristics of the
input data, such as condition number. A parallel algorithm is said to be scalable
[34] if the concurrent efficiency depends on the problem size and number of
processors only through their ratio. This ratio is simply the problem size per
processor, often referred to as the granularity. Thus, for a scalable algorithm,
the concurrent efficiency is constant as the number of processors increases while

10

keeping the granularity fixed. Alternatively, Eq. 2 shows that this is equivalent
to saying that, for a scalable algorithm, the performance depends linearly on
the number of processors for fixed granularity.

4.1.2 Ease-Of-Use

Ease-of-use is concerned with factors such as portability and the user interface
to the library. Portability, in its most inclusive sense, means that the code is
written in a standard language, such as Fortran or C, and that the source code
can be compiled on an arbitrary machine to produce a program that will run
correctly. We call this the “mail-order software” model of portability, since it
reflects the model used by software servers such as netlib [19]. This notion of
portability is quite demanding. It requires that all relevant properties of the
computer’s arithmetic and architecture be discovered at runtime within the con-
fines of a compilable Fortran code. For example, if it is important to know the
overflow threshold for scaling purposes, it must be determined at runtime with-
out overflowing, since overflow is generally fatal. Such demands have resulted
in quite large and sophisticated programs [24, 44], which must be modified fre-
quently to deal with new architectures and software releases. This “mail-order”
notion of software portability also means that codes generally must be written
for the worst possible machine expected to be used, thereby often degrading per-
formance on all others. Ease-of-use is also enhanced if implementation details
are largely hidden from the user, for example, through the use of an object-based
interface to the library [21].

4.1.3 Range-Of-Use

Range-of-use may be gauged by how numerically stable the algorithms are over
a range of input problems, and the range of data structures the library will
support. For example, LINPACK and EISPACK deal with dense matrices stored
in a rectangular array, packed matrices where only the upper or lower half of a
symmetric matrix is stored, and banded matrices where only the nonzero bands
are stored. In addition, some special formats such as Householder vectors are
used internally to represent orthogonal matrices. In the second half of this paper
we will focus on sparse matrices, that is matrices with many zero elements, which
may be stored in many different ways.

4.2 Portability, Scalability, and Standards

Portability of programs has always been an important consideration. Porta-
bility was easy to achieve when there was a single architectural paradigm (the
serial von Neumann machine) and a single programming language for scientific
programming (Fortran) embodying that common model of computation. Ar-
chitectural and linguistic diversity have made portability much more difficult,
but no less important, to attain. Users simply do not wish to invest significant
amounts of time to create large-scale application codes for each new machine.

11

Our answer is to develop portable software libraries that hide machine-specific
details.

In order to be truly portable, parallel software libraries must be standardized.
In a parallel computing environment in which the higher-level routines and/or
abstractions are built upon lower-level computation and message-passing rou-
tines, the benefits of standardization are particularly apparent. Furthermore,
the definition of computational and message-passing standards provides vendors
with a clearly defined base set of routines that they can implement efficiently.

From the user’s point of view, portability means that, as new machines are
developed, they are simply added to the network, supplying cycles where they
are most appropriate.

From the mathematical software developer’s point of view, portability may
require significant effort. Economy in development and maintenance of math-
ematical software demands that such development effort be leveraged over as
many different computer systems as possible. Given the great diversity of par-
allel architectures, this type of portability is attainable to only a limited degree,
but machine dependences can at least be isolated.

LAPACK is an example of a mathematical software package whose highest-
level components are portable, while machine dependences are hidden in lower-
level modules. Such a hierarchical approach is probably the closest one can
come to software portability across diverse parallel architectures. And the BLAS
that are used so heavily in LAPACK provide a portable, efficient, and flexible
standard for applications programmers.

Like portability, scalability demands that a program be reasonably effective
over a wide range of number of processors. Maintaining scalability of parallel
algorithms, and the software libraries implementing them, over a wide range
of architectural designs and numbers of processors will likely require that the
fundamental granularity of computation be adjustable to suit the particular cir-
cumstances in which the software may happen to execute. Our approach to this
problem is block algorithms with adjustable block size. In many cases, however,
polyalgorithms® may be required to deal with the full range of architectures and
processor multiplicity likely to be available in the future.

Scalable parallel architectures of the future are likely to be based on a
distributed memory architectural paradigm. In the longer term, progress in
hardware development, operating systems, languages, compilers, and commu-
nications may make it possible for users to view such distributed architectures
(without significant loss of efficiency) as having a shared memory with a global
address space. For the near term, however, the distributed nature of the under-
lying hardware will continue to be visible at the programming level; therefore,
efficient procedures for explicit communication will continue to be necessary.
Given this fact, standards for basic message passing (send/receive), as well as
higher-level communication constructs (global summation, broadcast, etc.), be-
come essential to the development of scalable libraries that have any degree of

3In a polyalgorithm the actual algorithm used depends on the computing environment and
the input data. The optimal algorithm in a particular instance is automatically selected at
runtime.

12

portability. In addition to standardizing general communication primitives, it
may also be advantageous to establish standards for problem-specific constructs
in commonly occurring areas such as linear algebra.

The BLACS (Basic Linear Algebra Communication Subprograms) [16, 22] is
a package that provides the same ease of use and portability for MIMD message-
passing linear algebra communication that the BLAS [17, 18, 46] provide for
linear algebra computation. Therefore, we recommend that future software
for dense linear algebra on MIMD platforms consist of calls to the BLAS for
computation and calls to the BLACS for communication. Since both packages
will have been optimized for a particular platform, good performance should be
achieved with relatively little effort. Also, since both packages will be available
on a wide variety of machines, code modifications required to change platforms
should be minimal.

4.3 The BLAS as the Key to Portability

At least three factors affect the performance of compilable code.

1. Vectorization/Cache Reuse. Designing vectorizable algorithms in lin-
ear algebra is usually straightforward. Indeed, for many computations
there are several variants, all vectorizable, but with different character-
istics in performance (see, for example, [15]). Linear algebra algorithms
can approach the peak performance of many machines—principally be-
cause peak performance depends on some form of chaining of vector ad-
dition and multiplication operations or cache reuse, and this is just what
the algorithms require. However, when the algorithms are realized in
straightforward Fortran77 or C code, the performance may fall well short
of the expected level, usually because Fortran compilers fail to minimize
the number of memory references—that is, the number of vector load and
store operations or effectively reuse cache.

2. Data movement. What often limits the actual performance of a vec-
tor, or scalar, floating-point unit is the rate of transfer of data between
different levels of memory in the machine. Examples include the transfer
of vector operands in and out of vector registers, the transfer of scalar
operands in and out of a high-speed, the movement of data between main
memory and a high-speed cache or local memory, paging between actual
memory and disk storage in a virtual memory system, and interprocessor
communication on a distributed memory concurrent computer.

3. Parallelism. The nested loop structure of most linear algebra algorithms
offers considerable scope for loop-based parallelism. This is the principal
type of parallelism that LAPACK and ScaLAPACK presently aim to ex-
ploit. On shared memory concurrent computers, this type of parallelism
can sometimes be generated automatically by a compiler, but often re-
quires the insertion of compiler directives. On distributed memory con-
current computers, data must be moved between processors. This is usu-

13

Table 2: Speed in Mflop/s of Level 2 and Level 3 BLAS operations on a CRAY
C90

(all matrices are of order 1000; U is upper triangular)

| Number of processors: | 1] 2] 4] 8] 16 |

Level 2: y « oAz + By | 899 | 1780 | 3491 | 6783 | 11207
Level 3: C < aAB + BC | 900 | 1800 | 3600 | 7199 | 14282

Level 2: x < Uz 852 | 1620 | 3063 | 5554 | 6953
Level 3: B+ UB 900 | 1800 | 3574 | 7147 | 13281
Level 2: + U~z 802 | 1065 | 1452 | 1697 | 1558
Level 3: B« U 'B 896 | 1792 | 3578 | 7155 | 14009

ally done by explicit calls to message passing routines, although parallel
language extensions such as Coherent Parallel C [30] and Split-C [13] do
the message passing implicitly.

These issues can be controlled, while obtaining the levels of performance
that machines can offer, through use of the BLAS, introduced in section 2.1.

The Level 1 BLAS are used in LAPACK, but for convenience rather than
for performance: they perform an insignificant fraction of the computation, and
they cannot achieve high efficiency on most modern supercomputers. Also, the
overhead entailed in calling the BLAS reduces the efficiency of the code. This
reduction is negligible for large matrices, but it can be quite significant for small
matrices. Fortunately, the level 1 BLAS can be removed from the smaller, more
frequently used LAPACK codes in a short editing session.

The Level 2 BLAS can achieve near-peak performance on many vector pro-
cessors, such as a single processor of a CRAY X-MP or Y-MP, or Convex C-2
machine. However, on other vector processors such as a CRAY-2 or an IBM
3090 VF, the performance of the Level 2 BLAS is limited by the rate of data
movement between different levels of memory.

The Level 3 BLAS overcome this limitation. This third level of BLAS per-
forms O(n?) floating-point operations on O(n?) data, whereas the Level 2 BLAS
perform only O(n?) operations on O(n?) data. The Level 3 BLAS also allow
us to exploit parallelism in a way that is transparent to the software that calls
them. While the Level 2 BLAS offer some scope for exploiting parallelism,
greater scope is provided by the Level 3 BLAS, as Table 2 illustrates.

The BLAS can provide portable high performance through being a standard
that is available on many platforms. Ideally, the computer manufacturer has
provided an assembly-coded BLAS tuned for that particular architecture, but
there is a standard implementation available that can simply be compiled and
linked. Using this standard BLAS may improve the efficiency of programs when
they are run on nonoptimizing compilers. This is because doubly subscripted

14

array references in the inner loop of the algorithm are replaced by singly sub-
scripted array references in the appropriate BLAS. The effect can be seen for
matrices of quite small order, and for large orders the savings are quite signifi-
cant.

4.4 Overview of dense linear algebra libraries

Over the past twenty-five years, we have has been directly involved in the de-
velopment of several important packages of dense linear algebra software: EIS-
PACK, LINPACK, LAPACK, and the BLAS. In addition, we are currently
involved in the development of ScaLAPACK, a scalable version of LAPACK
for distributed memory concurrent computers. In this section, we give a brief
review of these packages—their history, their advantages, and their limitations
on high-performance computers.

4.4.1 EISPACK

EISPACK is a collection of Fortran subroutines that compute the eigenvalues
and eigenvectors of nine classes of matrices: complex general, complex Her-
mitian, real general, real symmetric, real symmetric banded, real symmetric
tridiagonal, special real tridiagonal, generalized real, and generalized real sym-
metric matrices. In addition, two routines are included that use singular value
decomposition to solve certain least-squares problems.

EISPACK is primarily based on a collection of Algol procedures developed
in the 1960s and collected by J. H. Wilkinson and C. Reinsch in a volume
entitled Linear Algebra in the Handbook for Automatic Computation [64] series.
This volume was not designed to cover every possible method of solution; rather,
algorithms were chosen on the basis of their generality, elegance, accuracy, speed,
or economy of storage.

Since the release of EISPACK in 1972, over ten thousand copies of the col-
lection have been distributed worldwide.

4.4.2 LINPACK

LINPACK is a collection of Fortran subroutines that analyze and solve linear
equations and linear least-squares problems. The package solves linear systems
whose matrices are general, banded, symmetric indefinite, symmetric positive
definite, triangular, and tridiagonal square. In addition, the package computes
the QR and singular value decompositions of rectangular matrices and applies
them to least-squares problems.

LINPACK is organized around four matrix factorizations: LU factorization,
pivoted Cholesky factorization, QR factorization, and singular value decompo-
sition. The term LU factorization is used here in a very general sense to mean
the factorization of a square matrix into a lower triangular part and an upper
triangular part, perhaps with pivoting. These factorizations will be treated at
greater length later, when the actual LINPACK subroutines are discussed. But

15

first a digression on organization and factors influencing LINPACK’s efficiency
is necessary.

LINPACK uses column-oriented algorithms to increase efficiency by preserv-
ing locality of reference. By column orientation we mean that the LINPACK
codes always reference arrays down columns, not across rows. This works be-
cause Fortran stores arrays in column major order. This means that as one
proceeds down a column of an array, the memory references proceed sequen-
tially in memory Thus, if a program references an item in a particular block,
the next reference is likely to be in the same block. See further section 3.1.1.

LINPACK uses the Level 1 BLAS; see section 4.3.

4.4.3 LAPACK

LAPACK [14] provides routines for solving systems of simultaneous linear equa-
tions, least-squares solutions of linear systems of equations, eigenvalue prob-
lems, and singular value problems. The associated matrix factorizations (LU,
Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are related
computations such as reordering of the Schur factorizations and estimating con-
dition numbers. Dense and banded matrices are handled, but not general sparse
matrices. In all areas, similar functionality is provided for real and complex ma-
trices, in both single and double precision.

The original goal of the LAPACK project was to make the widely used
EISPACK and LINPACK libraries run efficiently on shared-memory vector and
parallel processors. On these machines, LINPACK and EISPACK are ineffi-
cient because their memory access patterns disregard the multilayered memory
hierarchies of the machines, thereby spending too much time moving data in-
stead of doing useful floating-point operations. LAPACK addresses this problem
by reorganizing the algorithms to use block matrix operations, such as matrix
multiplication, in the innermost loops [2, 14]. These block operations can be
optimized for each architecture to account for the memory hierarchy [1], and
so provide a transportable way to achieve high efficiency on diverse modern
machines. Here we use the term “transportable” instead of “portable” because,
for fastest possible performance, LAPACK requires that highly optimized block
matrix operations be already implemented on each machine. In other words,
the correctness of the code is portable, but high performance is not—if we limit
ourselves to a single Fortran source code.

LAPACK can be regarded as a successor to LINPACK and EISPACK. It
has virtually all the capabilities of these two packages and much more besides.
LAPACK improves on LINPACK and EISPACK in four main respects: speed,
accuracy, robustness and functionality. While LINPACK and EISPACK are
based on the vector operation kernels of the Level 1 BLAS, LAPACK was de-
signed at the outset to exploit the Level 3 BLAS —a set of specifications for
Fortran subprograms that do various types of matrix multiplication and the
solution of triangular systems with multiple right-hand sides. Because of the
coarse granularity of the Level 3 BLAS operations, their use tends to promote
high efficiency on many high-performance computers, particularly if specially

16

coded implementations are provided by the manufacturer.

LAPACK is designed to give high efficiency on vector processors, high-
performance “superscalar” workstations, and shared memory multiprocessors.
LAPACK in its present form is less likely to give good performance on other
types of parallel architectures (for example, massively parallel SIMD machines,
or MIMD distributed memory machines), but the ScaLAPACK project, de-
scribed in Section 4.4.4, is intended to adapt LAPACK to these new architec-
tures. LAPACK can also be used satisfactorily on all types of scalar machines
(PCs, workstations, mainframes).

LAPACK, like LINPACK, provides LU and Cholesky factorizations of band
matrices. The LINPACK algorithms can easily be restructured to use Level
2 BLAS, though restructuring has little effect on performance for matrices of
very narrow bandwidth. It is also possible to use Level 3 BLAS, at the price of
doing some extra work with zero elements outside the band [20]. This process
becomes worthwhile for large matrices and semi-bandwidth greater than 100 or
so.

4.4.4 ScaLAPACK

The ScaLAPACK software library extends the LAPACK library to run scal-
ably on MIMD, distributed memory, concurrent computers [10, 11]. For such
machines the memory hierarchy includes the off-processor memory of other pro-
cessors, in addition to the hierarchy of registers, cache, and local memory on
each processor. Like LAPACK, the ScaLAPACK routines are based on block-
partitioned algorithms in order to minimize the frequency of data movement
between different levels of the memory hierarchy. The fundamental building
blocks of the ScaLAPACK library are distributed memory versions of the Level
2 and Level 3 BLAS, and a set of Basic Linear Algebra Communication Sub-
programs (BLACS) [16, 22] for communication tasks that arise frequently in
parallel linear algebra computations. In the ScaLAPACK routines, all interpro-
cessor communication occurs within the distributed BLAS and the BLACS, so
the source code of the top software layer of ScaLAPACK looks very similar to
that of LAPACK.

We envisage a number of user interfaces to ScaLAPACK. Initially, the inter-
face will be similar to that of LAPACK, with some additional arguments passed
to each routine to specify the data layout. Once this is in place, we intend
to modify the interface so the arguments to each ScaLAPACK routine are the
same as in LAPACK. This will require information about the data distribu-
tion of each matrix and vector to be hidden from the user. This may be done
by means of a ScaLAPACK initialization routine. This interface will be fully
compatible with LAPACK. Provided “dummy” versions of the ScaLAPACK
initialization routine and the BLACS are added to LAPACK, there will be no
distinction between LAPACK and ScaLAPACK at the application level, though
each will link to different versions of the BLAS and BLACS. Following on from
this, we will experiment with object-based interfaces for LAPACK and ScaLLA-
PACK, with the goal of developing interfaces compatible with Fortran 90 [10],

17

and C++ [21].

5 Future Research Directions in Dense Algo-
rithms

Traditionally, large, general-purpose mathematical software libraries have re-
quired users to write their own programs that call library routines to solve spe-
cific subproblems that arise during a computation. Adapted to a shared-memory
parallel environment, this conventional interface still offers some potential for
hiding underlying complexity. For example, the LAPACK project incorporates
parallelism in the Level 3 BLAS, where it is not directly visible to the user.

But when going from shared-memory systems to the more readily scalable
distributed memory systems, the complexity of the distributed data structures
required is more difficult to hide from the user. Not only must the problem
decomposition and data layout be specified, but different phases of the user’s
problem may require transformations between different distributed data struc-
tures.

These deficiencies in the conventional user interface have prompted extensive
discussion of alternative approaches for scalable parallel software libraries of the
future. Possibilities include:

1. Traditional function library (i.e., minimum possible change to the status
quo in going from serial to parallel environment). This will allow one to
protect the programming investment that has been made.

2. Reactive servers on the network. A user would be able to send a com-
putational problem to a server that was specialized in dealing with the
problem. This fits well with the concepts of a networked, heterogeneous
computing environment with various specialized hardware resources (or
even the heterogeneous partitioning of a single homogeneous parallel ma-
chine).

3. General interactive environments like Matlab or Mathematica, perhaps
with “expert” drivers (i.e., knowledge-based systems). With the growing
popularity of the many integrated packages based on this idea, this ap-
proach would provide an interactive, graphical interface for specifying and
solving scientific problems. Both the algorithms and data structures are
hidden from the user, because the package itself is responsible for stor-
ing and retrieving the problem data in an efficient, distributed manner.
In a heterogeneous networked environment, such interfaces could provide
seamless access to computational engines that would be invoked selectively
for different parts of the user’s computation according to which machine
is most appropriate for a particular subproblem.

4. Domain-specific problem solving environments, such as those for structural
analysis. Environments like Matlab and Mathematica have proven to be

18

especially attractive for rapid prototyping of new algorithms and systems
that may subsequently be implemented in a more customized manner for
higher performance.

5. Reusable templates (i.e., users adapt “source code” to their particular
applications). A template is a description of a general algorithm rather
than the executable object code or the source code more commonly found
in a conventional software library. Nevertheless, although templates are
general descriptions of key data structures, they offer whatever degree of
customization the user may desire.

Novel user interfaces that hide the complexity of scalable parallelism will
require new concepts and mechanisms for representing scientific computational
problems and for specifying how those problems relate to each other. Very high
level languages and systems, perhaps graphically based, not only would facili-
tate the use of mathematical software from the user’s point of view, but also
would help to automate the determination of effective partitioning, mapping,
granularity, data structures, etc. However, new concepts in problem specifi-
cation and representation may also require new mathematical research on the
analytic, algebraic, and topological properties of problems (e.g., existence and
uniqueness).

We have already begun work on developing such templates for sparse matrix
computations. Future work will focus on extending the use of templates to dense
matrix computations.

We hope the insight we gained from our work will influence future develop-
ers of hardware, compilers and systems software so that they provide tools to
facilitate development of high quality portable numerical software.

The EISPACK, LINPACK, and LAPACK linear algebra libraries are in the
public domain, and are available from mnetlib. For example, for more informa-
tion on how to obtain LAPACK, send the following one-line email message to
netlib@ornl.gov:

send index from lapack
or visit the web site at http://www.netlib.org/lapack/. Information for EIS-
PACK, LINPACK, and ScaLAPACK can be similarly obtained.

6 Sparse Linear Algebra Methods

6.1 Origin of sparse linear systems

The most common source of sparse linear systems is the numerical solution of
partial differential equations. Many physical problems, such as fluid flow or
elasticity, can be described by partial differential equations. These are implicit
descriptions of a physical model, describing some internal relation such as stress
forces. In order to arrive at an explicit description of the shape of the object or
the temperature distribution, we need to solve the PDE, and for this we need
numerical methods.

19

6.1.1 Discretised partial differential equations

Several methods for the numerical solution of PDEs exist, the most common
ones being the methods of finite elements, finite differences, and finite volumes.
A common feature of these is that they identify discrete points in the physical
object, and give a set of equations relating these points.

Typically, only points that are physically close together are related to each
other in this way. This gives a matrix structure with very few nonzero elements
per row, and the nonzeros are often confined to a ‘band’ in the matrix.

6.1.2 Sparse matrix structure

Matrices from discretised partial differential equations contain so many zero el-
ements that it pays to find a storage structure that avoids storing these zeros.
The resulting memory savings, however, are offset by an increase in program-
ming complexity, and by descreased efficiency of even simple operations such as
the matrix vector product.

More complicated operations, such as solving a linear system, with such a
sparse matrix present a next level of complication, as both the inverse and the
LU factorisation of a sparse matrix are not as sparse, thus needing considerably
more storage. Specifically, the inverse of the type of sparse matrix we are
considering is a full matrix, and factoring such a sparse matrix fills in the band
completely.

Example: central differences in d dimensions, n points per line, matrix size
N = n%, bandwidth ¢ = n¢~! in natural ordering, number of nonzero ~ n?,

number of matrix elements N2 = n?? number of elements in factorisation
N1+(d_1)/d.

6.2 Basic elements in sparse linear algebra methods

Methods for sparse systems use, like those for dense systems, vector-vector,
matrix-vector, and matrix-matrix operations. However, there are some impor-
tant differences.

For iterative methods, discussed in section 8, there are almost no matrix-
matrix operations. See [43] for an exception. Since most modern architectures
prefer these Level 3 operations, the performance of iterative methods will be
limited from the outset.

An even more serious objection is that the sparsity of the matrix implies that
indirect addressing is used for retrieving elements. For example, in the popular
row-compressed matrix storage format, the matrix-vector multiplication looks
like

fori=1...n
p pointer to row ¢
forj=1,n;
yi ¢ yi +alp + j)z(clp+ j))

20

where n; is the number of nonzeros in row i, and p(-) is an array of column
indices. A number of such algorithms for several sparse data formats are given
in [6].

Direct methods can have a BLAS 3 component if they are a type of dissection
method. However, in a given sparse problem, the more dense the matrices are,
the smaller they are on average. They are also not general full matrices, but
only banded. Thus we don’t expect very high performance on such methods
either.

7 Direct solution methods

For the solution of a linear system one needs to factor the coefficient matrix.
Any direct method is a variant of Gaussian elimination. As remarked above,
for a sparse matrix, this fills in the band in which the nonzero elements are
contained. In order to minimise the storage needed for the factorisation, re-
search has focused on finding suitable orderings of the matrix. Re-ordering the
equations by a symmetric permutation of the matrix does not change the nu-
merical properties of the system in many cases, and it can potentially give large
savings in storage. In general, direct methods do not make use of the numerical
properties of the linear system, and thus their execution time is affected only
by the structural properties of the input matrix.

7.1 Matrix graph theory

The most convenient way of talking about matrix orderings or permutations
is to consider the matrix ‘graph’ [55]. We introduce a node for every physical
variable, and nodes 7 and j are connected in the graph if the (7, j) element of the
matrix is nonzero. A symmetric permutation of the matrix then corresponds
to a numbering of the nodes, while the connections stay the same. With these
permutations, one hopes to reduce the ‘bandwidth’ of the matrix, and thereby
the amount of fill generated by the factorisation.

7.2 Cuthill-McKee ordering

A popular ordering strategy is the Cuthill-McKee ordering, which finds levels
or wavefronts in the matrix graph. This algorithm is easily described:

1. Take any node as starting point, and call that ‘level 0.

2. Now successively take all nodes connected to the previous level, and group
them into the next level.

3. Iterate this until all nodes are grouped into some level; the numbering
inside each level is of secondary importance.

This ordering strategy often gives a smaller bandwidth than the natural
ordering, and there are further advantages to having a level structure, e.g.,

21

for out-of-core solution or for parallel processing. Often, one uses the ‘reverse
Cuthill-McKee’ orderings [50].

7.3 Minimum degree

An explicit reduction of bandwidth is effected by the minimum degree ordering,
which at any point in the factorisation chooses the variable with the smallest
number of connections. Considering the size of the resulting fill-in is used as a
tie-breaker.

7.4 Nested dissection

Instead of trying to minimise fill-in by reducing the bandwidth, one could try
a direct approach. The ‘nested dissection’ ordering recursively splits the ma-
trix graph in two, thus separating it into disjoint subgraphs. Somewhat more
precisely, given a graph, this algorithm relies on the existence of a ‘separator’:
a set of nodes such that the other nodes fall into two mutually unconnected sub-
graphs. The fill from first factoring these subgraphs, followed by a factorisation
of the separator, is likely to be lower than for other orderings.

It can be shown that for PDEs in two space dimensions this method has
a storage requirement that is within a log-factor of that for the matrix itself,
that is, very close to optimal [33]. This proof is easy for PDEs on rectangular
grids, but with enough graph theory it can be generalised [49, 48]. However, for
problems in three space dimensions, the nested dissection method is no longer
optimal.

An advantage of dissection-type methods is that they lead to large numbers
of uncoupled matrix problems. Thus, to an extent, parallelisation of such meth-
ods is easy. However, the higher levels in the tree quickly have fewer nodes than
the number of available processors. In addition to this, they are also the larger
subproblems in the algorithm, thereby complicating the parallelisation of the
method.

Another practical issue is the choice of the separator set. In a model case
this is trivial, but in practice, and in particular in parallel, this is a serious
problem, since the balancing of the two resulting subgraphs depends on this

choice. Recently, so-called ‘2nd eigenvector methods’ have become popular for
this [56].

8 Iterative solution methods

Direct methods, as sketched above, have some pleasant properties. Foremost
is the fact that their time to solution is predictable, either a priori, or after
determining the matrix ordering. This is due to the fact that the method
does not rely on numerical properties of the coefficient matrix, but only on its
structure. On the other hand, the amount of fill can be substantial, and with

22

it the execution time. For large scale applications, the storage requirements for
a realistic size problem can simply be prohibitive.

Iterative methods have far lower storage demands. Typically, the storage,
and the cost per iteration with it, is of the order of the matrix storage. However,
the number of iterations strongly depends on properties of the linear system,
and is at best known up to an order estimate; for difficult problems the methods
may not even converge due to accumulated round-off errors.

8.1 Basic iteration procedure

In its most informal sense, an iterative method in each iteration locates an ap-
proximation to the solution of the problem, measures the error between the
approximation and the true solution, and based on the error measurement im-
proves on the approximation by constructing a next iterate. This process repeats
until the error measurement is deemed small enough.

8.2 Stationary iterative methods

The simplest iterative methods are the ‘stationary iterative methods’. They are
based on finding a matrix M that is, in some sense, ‘close’ to the coefficient
matrix A. Instead of solving Az = b, which is deemed computationally infeasi-
ble, we solve Mxz1 = b. The true measure of how well x; approximates x is the
error e; = x1; — x, but, since we do not know the true solution z, this quantity
is not computable. Instead, we look at the ‘residual’: r, = Ae; = Az, — b,
which is a computable quantity. One easily sees that the true solution satisfies
z=A"'=ax, — A 'ry, so, replacing A~ with M ! in this relation, we define
Ty =T — M_1T1.

Stationary methods are easily analysed: we find that r; — 0 if all eigenvalues
A= AT —AM 1) satisfy |A| < 1. For certain classes of A and M this inequality
is automatically satisfied [36, 61].

8.3 Krylov space methods

The most popular class of iterative methods nowadays is that of ‘Krylov space
methods’. The basic idea there is to construct the residuals such that the n-th
residual 7, is obtained from the first by multiplication by some polynomial in
the coefficient matrix A, that is,

rm =14nh—1 (A)T'l .

The properties of the method then follow from the properties of the actual
polynomial [3, 7, 9].

Most often, these iteration polynomials are chosen such that the residuals
are orthogonal under some inner product. From this, one usually obtains some
minimisation property, though not necessarily a minimisation of the error.

Since the iteration polynomials are of increasing degree, it is easy to see
that the main operation in each iteration is one matrix-vector multiplication.

23

Additionally, some vector operations, including inner products in the orthogo-
nalisation step, are needed.

8.3.1 The issue of symmetry

Krylov method residuals can be shown to satisfy the equation
Ty € span{Ar,_1,7p_1,...,T1}.

This brings up the question whether all r,_1,...,r;} need to be stored in order
to compute r,. The answer is that this depends on the symmetry of the co-
efficient matrix. For a symmetric problem, the r, vectors satisfy a three-term
recurrence. This was the original Conjugate Gradient method [40].

For nonsymmetric problems, on the other hand, no short recurrences can
exist [29], and therefore, all previous residuals need to be stored. Some of these
methods are OrthoDir and OrthoRes [65].

If the requirement of orthogonality is relaxed, one can derive short-recurrence
methods for nonsymmetric problems [31]. In the Biconjugate Gradient method,
two sequences {ry,} and {s,} are derived that are mutually orthogonal, and that
satisfy three-term recurrences.

A disadvantage of this latter method is that it needs application of the
transpose of the coefficient matrix. In environments where the matrix is only
operatively defined, this may exclude this method from consideration. Recently
developed methods, mostly based on the work of [59, 60], obviate this consider-
ation.

8.3.2 True minimisation

The methods mentioned so far minimise the error (over the subspace generated)
in some matrix-related norm, but not in the Euclidean norm. We can effect a
true minimisation by collecting the residuals generated so far, and finding a
minimising convex combination. This leads to one of the most popular methods
nowadays: GMRES [58]. It will always generate the optimal iterate, but for this
it requires storage of all previous residuals. In practice, truncated or restarted
version of GMRES are popular.

8.4 Preconditioners

The matrix M that appeared in the section on stationary iterative methods can
play a role in Krylov space methods too. There, it is called a ‘preconditioner’,
and it acts to improve spectral properties of the coefficient matrix that determine
the convergence speed of the method. In a slight simplification, one might say
that we replace the system Az = b by

(AM~Y)(Mz) = b.

(Additionally, the inner product is typically changed.) It is generally recognised
that a good preconditioner is crucial to the performance of an iterative method.

24

The requirements on a preconditioner are that it should be easy to construct,
a system Mz = b should be simple to solve, and in some sense M should
be an approximation to A. These requirements need to be balanced: a more
accurate preconditioner is usually harder to construct and more costly to apply,
so any decrease in the number iterations has to be set against a longer time per
iteration, plus an increased setup phase.

The holy grail of preconditioners is finding an ‘optimal’ preconditioner: one
for which the number of operations for applying it is of the order of the number
of variables, while the resulting number of iterations is bounded in the problem
size. There are very few optimal preconditioners.

8.4.1 Simple preconditioners

Some preconditioners need no construction at all. For instance, the Jacobi
preconditioner consists of simply the matrix diagonal D 4. Since in PDE ap-
plications the largest elements are on the diagonal, one expects some degree of
accuracy from this. Using not just the diagonal, but the whole lower triangular
part Dy + L4 of the coefficient matrix, an even more accurate method results.
Since this triangular matrix is nonsymmetric, it is usually balanced with the
upper triangular part as (D4 + La)D " (Da + Ua).

8.4.2 Incomplete factorisations

A successful strategy for preconditioners results from mimicking direct methods,
but applying some approximation process to them. Thus, the so-called ‘incom-
plete factorisation’ methods ignore fill elements in the course of the Gaussian
elimination process. Two strategies are to ignore elements in fixed positions,
or to drop elements that are deemed small enough to be negligible. The aim is
here to preserve at least some of the sparsity of the coefficient matrix in the fac-
torisation, while giving something that is close enough to the full factorisation.

Incomplete factorisations can be very effective, but there are a few practical
problems. For the class of M-matrices, these methods are well-defined [52], but
for other, even fairly common classes of matrices, there is a possibility that the
algorithm breaks down [42, 45, 51].

Also, factorisations are inherently recursive, and coupled with the sparse-
ness of the incomplete factorisation, this gives very limited parallelism in the
algorithm using a natural ordering of the unknowns. Different orderings may
be more parallel, but take more iterations [25, 27, 43].

8.4.3 Analytically inspired preconditioners

In recent years, a number of preconditioners have gained in popularity that are
more directly inspired by the continuous problem. First of all, for a matrix from
an elliptic PDE, one can use a so-called ‘fast solver’ as preconditioner [12, 28, 63].

A particularly popular class of preconditioners based on the continuous prob-
lem, is that of ‘domain decomposition’ methods. If the continuous problem was

25

elliptic, then decomposing the domain into simply connected pieces leads to
elliptic problems on these subdomains, tied together by internal boundary con-
ditions of some sort.

For instance, in the Schur complement domain decomposition method [8],
thin strips of variables are assigned a function as interface region, and the orig-
inal problem reduces to fully independent problems on the subdomains, con-
nected by a system on the interface that is both smaller and better conditioned,
but more dense, than the original one. While the subdomains can trivially be
executed in parallel, the interface system poses considerable problems.

Choosing overlapping instead of separated subdomains leads to the class of
Schwarz methods [47]. The original Schwarz method on two domains proposed
solving one subdomain, deriving interface conditions from it for the other sub-
domain, and solving the system there. Repetition of this process can be shown
to converge. In a more parallel variant of this method, all subdomains solve
their system simultaneously, and the solutions on the overlap regions are added
together.

Multilevel methods do not operate by decomposing the domain. Rather, they
work on a sequence of nested discretisation, solving the coarser ones as a starting
point for solving the finer levels. Under certain conditions such methods can be
shown to be close to optimal [4, 35]. However, they require explicit knowledge of
the operator and boundary conditions. For this reason, people have investigated
algebraic variants [5, 57]. In both cases, these methods can be parallelised by
distributing each level over the processors, but this may not be trivial.

9 Libraries and standards in sparse methods

Unlike in dense methods, there are few standards for iterative methods. Most
of this is due to the fact that sparse storage is more complicated, admitting of
more variation, and therefore less standardised. Whereas the (dense) BLAS has
been accepted for a long time, sparse BLAS is not more than a proposal under
research.

9.1 Storage formats

As is apparent from the matrix-vector example in section 6.2, storage formats
for sparse matrices include not just the matrix elements, but pointer information
describing where the nonzero elements are placed in the matrix. A few storage
formats are in common use (for more details see [6]):

Aij format In the ‘Aij’ format, three arrays of the same length are allocated:
one containing the matrix elements, and the other two containing the
1 and j coordinates of these elements. No particular ordering of the ele-
ments is implied.

Row/column-compressed In the row-compressed format one array of inte-
gers is allocated in addition to the matrix element, giving the column

26

indices of the nonzero elements. Since all elements in the same row are
stored contiguously, a second, smaller, array is needed giving the start
points of the rows in the two larger arrays.

Compressed diagonal If the nonzero elements of the matrix are located,
roughly or exactly, along subdiagonals, one could use contiguous stor-
age for these diagonals. There are several diagonal storage formats. In
the simplest, describing a contiguous block of subdiagonals, only the array
of matrix elements is needed; two integers are sufficient to describe which
diagonals have been stored.

There exist blocked versions of these formats, for matrices that can be parti-
tioned into small square subblocks.

9.2 Sparse libraries

Since sparse formats are more complicated than dense matrix storage, sparse
libraries have an added level of complexity. This holds even more so in the
parallel case, where additional indexing information is needed to specify which
matrix elements are on which processor.

There are two fundamentally different approaches for handling this com-
plexity. Some sparse libraries require the user to set up the matrix and supply
it to the library, while all handling is performed by the library. This requires
the user to store data in a format dictated by the library, which might involve
considerable work.

On the other hand, the library might do even the matrix setup internally,
hiding all data from the user. This gives total freedom to the user, but it
requires the library to supply sufficient access functions so that the user can
perform certain matrix operations, even while not having access to the object
itself.

10 Conclusion

The sparse linear systems that result from partial differential equations need
very different techniques from those used for dense matrices. While direct meth-
ods have the virtue of reliability, they also take copious amounts of space and
time. Iterative methods, of one type or another, are considerably more frugal in
their space demands, but on difficult problems their convergence may be slow,
and is not even guaranteed.

Acknowledgments

This research was performed in part using the Intel Touchstone Delta System
operated by the California Institute of Technology on behalf of the Concurrent
Supercomputing Consortium. Access to this facility was provided through the
Center for Research on Parallel Computing.

27

References

[1]

[2]

[3]

[4]

[5]

[7]

E. Anderson and J. Dongarra. Results from the initial release of
LAPACK. Technical Report LAPACK working note 16, Computer
Science Department, University of Tennessee, Knoxville, TN, 1989.
http://www.netlib.org/lapack/lawns/lawnl6.ps.

E. Anderson and J. Dongarra. Evaluating block algorithm variants
in LAPACK. Technical Report LAPACK working note 19, Com-
puter Science Department, University of Tennessee, Knoxville, TN, 1990.
http://www.netlib.org/lapack/lawns/lawnl9.ps.

O. Axelsson and A.V. Barker. Finite element solution of boundary value
problems. Theory and computation. Academic Press, Orlando, F1., 1984.

O. Axelsson and P. Vassilevski. Algebraic multilevel preconditioning meth-
ods, I. Numer. Math, 56:157-177, 1989.

Owe Axelsson and Victor Eijkhout. The nested recursive two-level fac-
torization method for nine-point difference matrices. SIAM J. Sci. Stat.
Comput., 12:1373-1400, 1991.

Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June
Donato, Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine,
and Henk van der Vorst. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. SIAM, Philadelphia PA, 1994.
http://www.netlib.org/templates/templates.ps.

Garrett Birkhoff and Robert E. Lynch. Numerical solution of elliptic prob-
lems. STAM, Philadelphia, 1984.

P. Bjorstad and O. Widlund. Iterative methods for the solution of ellip-
tic problems on regions partitioned in to substructures. SIAM J. Numer.
Anal., 23:1097-1120, 1986.

Tony Chan and Henk van der Vorst. Linear system solvers: Sparse iterative
methods. In D. Keyes et al, editor, Parallel Numerical Algorithms, Proc. of
the ICASW/LaRC Workshop on Parallel Numerical Algorithms, May 23-
25, 1994, pages 91-118. Kluwer Publ., Dordrecht, The Netherlands, 1997.

J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. Scalapack: A scalable
linear algebra library for distributed memory concurrent computers. In
Proceedings of the Fourth Symposium on the Frontiers of Massively Parallel
Computation, pages 120-127. IEEE Computer Society Press, 1992.

J. Choi, J. J. Dongarra, and D. W. Walker. The design of scalable software
libraries for distributed memory concurrent computers. In J. J. Dongarra
and B. Tourancheau, editors, Environments and Tools for Parallel Scientific
Computing. Elsevier Science Publishers, 1993.

28

[12]

[16]

[19]

[20]

Paul Concus and Gene H. Golub. Use of fast direct methods for the efficient
numerical solution of nonseparable elliptic equations. SIAM J. Numer.
Anal., 10:1103-1120, 1973.

D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta,
T. von Eicken, and K. Yelick. Introduction to Split-C: Version 0.9. Tech-
nical report, Computer Science Division — EECS, University of California,
Berkeley, CA 94720, February 1993.

J. Demmel. LAPACK: A portable linear algebra library for supercomput-
ers. In Proceedings of the 1989 IEEE Control Systems Society Workshop
on Computer-Aided Control System Design, December 1989.

J. J. Dongarra. Increasing the performance of mathematical software
through high-level modularity. In Proc. Sizth Int. Symp. Comp. Methods in
Eng. € Applied Sciences, Versailles, France, pages 239-248. North-Holland,
1984.

J. J. Dongarra. LAPACK Working Note 34: Workshop on
the BLACS. Computer Science Dept. Technical Report CS-
91-134, University of Tennessee, Knoxville, TN, May 1991.
http://www.netlib.org/lapack/lawns/lawnl6.ps.

J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A set of level
3 basic linear algebra subprograms. ACM Transactions on Mathematical
Software, 16(1):1-17, 1990.

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An extended
set of Fortran basic linear algebra subroutines. ACM Transactions on Math-
ematical Software, 14(1):1-17, March 1988.

J. J. Dongarra and E. Grosse. Distribution of mathematical software via
electronic mail. Communications of the ACM, 30(5):403-407, July 1987.

J. J. Dongarra, Peter Mayes, and Giuseppe Radicati di Brozolo. The IBM
RISC System /6000 and linear algebra operations. Supercomputer, 44(VIII-
4):15-30, 1991.

J. J. Dongarra, R. Pozo, and D. W. Walker. An object oriented design for
high performance linear algebra on distributed memory architectures. In
Proceedings of the Object Oriented Numerics Conference, 1993.

J. J. Dongarraand R. A. van de Geijn. Two-dimensional basic linear algebra
communication subprograms. Technical Report LAPACK working note 37,
Computer Science Department, University of Tennessee, Knoxville, TN,
October 1991.

J.J. Dongarra, F.C. Gustavson, and A. Karp. Implementing linear algebra
algorithms for dense matrices on a vector pipeline machine. STAM Review,
26:91-112, 1984.

29

[24]

[29]

[30]

31]

32]

J. Du Croz and M. Pont. The development of a floating-point validation
package. In M. J. Irwin and R. Stefanelli, editors, Proceedings of the 8th
Symposium on Computer Arithmetic, Como, Italy, May 19-21, 1987. IEEE
Computer Society Press, 1987.

LS. Duff and G.A. Meurant. The effect of ordering on preconditioned
conjugate gradients. BIT, 29:635-657, 1989.

A. Edelman. Large dense numerical linear algebra in 1993: The parallel
computing influence. International Journal Supercomputer Applications,
7:113-128, 1993.

Victor Eijkhout. Analysis of parallel incomplete point factorizations. Lin.
Alg. Appl., 154-156:723-740, 1991.

Howard C. Elman and Martin H. Schultz. Preconditioning by fast direct
methods for non self-adjoint nonseparable elliptic equations. SIAM J. Nu-
mer. Anal., 23:44-57, 1986.

V. Faber and T. Manteuffel. Orthogonal error methods. SIAM J. Numer.
Anal., 24:170-187, 1987.

E. W. Felten and S. W. Otto. Coherent parallel C. In G. C. Fox, editor,
Proceedings of the Third Conference on Hypercube Concurrent Computers
and Applications, pages 440-450. ACM Press, 1988.

R. Fletcher. Conjugate gradient methods for indefinite systems. In G.A.
Watson, editor, Numerical Analysis Dundee 1975, pages 73-89, New York,
1976. Springer Verlag.

G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon,
and D. W. Walker. Solving Problems on Concurrent Processors, volume 1.
Prentice Hall, Englewood Cliffs, N.J., 1988.

Alan George and Joseph H-W. Liu. Computer Solution of Large Sparse
Positive Definite Systems. Prentice-Hall, Inc., Englewood Cliffs, New Jer-
sey 07632, 1981.

A. Gupta and V. Kumar. On the scalability of FFT on parallel computers.
In Proceedings of the Frontiers 90 Conference on Massively Parallel Com-
putation. IEEE Computer Society Press, 1990. Also available as technical
report TR 90-20 from the Computer Science Department, University of
Minnesota, Minneapolis, MN 55455.

W. Hackbusch. Multi-Grid Methods and Applications. Springer-Verlag,
1985.

Louis A. Hageman and David M. Young. Applied Iterative Methods. Aca-
demic Press, New York, 1981.

30

[37] R. Harrington. Origin and development of the method of moments for field
computation. IEEE Antennas and Propagation Magazine, June 1990.

[38] J. L. Hess. Panel methods in computational fluid dynamics. Annual Reviews
of Fluid Mechanics, 22:255-274, 1990.

[39] J. L. Hess and M. O. Smith. Calculation of potential flows about arbi-
trary bodies. In D. Kiichemann, editor, Progress in Aeronautical Sciences,
Volume 8. Pergamon Press, 1967.

[40] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving
linear systems. Nat. Bur. Stand. J. Res., 49:409-436, 1952.

[41] R. W. Hockney and C. R. Jesshope. Parallel Computers. Adam Hilger
Ltd., Bristol, UK, 1981.

[42] A. Jennings and G.M. Malik. Partial elimination. J. Inst. Maths Applics,
20:307-316, 1977.

[43] M.T. Jones and P.E. Plassmann. Parallel solution of unstructed, sparse
systems of linear equations. In R.F. Sincovec, D.E. Keyes, M.R. Leuze,
L.R. Petzold, and D.A. Reed, editors, Proceedings of the Sizth SIAM con-
ference on Parallel Processing for Scientific Computing, pages 471-475,
Philadelphia. STAM.

[44] W. Kahan. Paranoia. Available from netlib [19]:
http://www.netlib.org/paranoia.

[45] D.S. Kershaw. The incomplete cholesky-conjugate gradient method for the
iterative solution of systems of linear equations. J. Comp. Phys., 26:43-65,
1978.

[46] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra
subprograms for Fortran usage. ACM Trans. Math. Softw., 5:308-323,
1979.

[47] P.L. Lions. On the Schwarz alternating method. i. In Roland Glowinski,
Gene H. Golub, Gérard Meurant, and Jacques Periaux, editors, Domain
Decomposition Methods for Partial Differential Equations, proceedings of
the First Internation Symposium, Paris, January 7-9, 1987, pages 1-42,
Philadelphia, 1988. STAM.

[48] Richard J. Lipton, Donald J. Rose, and Robert Endre Tarjan. Generalized
nested dissection. STAM J. Numer. Anal., 16:346-358, 1979.

[49] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for
planar graphs. SIAM J. Appl. Math., 36:177-189, 1979.

[50] Joseph W-H Liu and Andrew H. Sherman. Comparative analysis of
the Cuthill-McKee and the reverse Cuthill-McKee ordering algorithms for
sparse matrices. SIAM J. Numer. Anal., 13:198-213, 1973.

31

[51]

[52]

T.A. Manteuffel. An incomplete factorization technique for positive definite
linear systems. Math. Comp., 34:473-497, 1980.

J.A. Meijerink and H.A. van der Vorst. An iterative solution method for

linear systems of which the coefficient matrix is a symmetric m-matrix.
Math Comp, 31:148-162, 1977.

J.M. Ortega. The ijk forms of factorization methods I. Vector computers.
Parallel Computing, 7:135-147, 1988.

J.M. Ortega and C.H. Romine. The ijk forms of factorization methods II.
Parallel systems. Parallel Computing, 7:149-162, 1988.

Seymour V. Parter. The use of linear graphs in gaussian elimination. SIAM
Review, 3:119-130, 1961.

Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse
matrices with eigenvectors of graphs. SIAM Journal of Matriz Analysis
and Applications, 11(3):430-452, July 1990.

J.W. Ruge and K. Stiiben. Algebraic multigrid. In Stephen F. McCormick,
editor, Multigrid Methods. STAM, 1987. chapter 4.

Yousef Saad and Martin H. Schultz. GMRes: a generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat.
Comput., 7:856-869, 1986.

Peter Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear
systems. SIAM J. Sci. Stat. Comput., 10:36-52, 1989.

Henk van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant
of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci.
Stat. Comput., 13:631-644, 1992.

Richard S. Varga. Matrixz Iterative Analysis. Prentice-Hall Inc., Englewood
Cliffs, NJ, 1962.

J. J. H. Wang. Generalized Moment Methods in Electromagnetics. John
Wiley & Sons, New York, 1991.

O. Widlund. On the use of fast methods for separable finite difference
equations for the solution of general elliptic problems. In D.J. Rose and
R.A. Willoughby, editors, Sparse matrices and their applications, pages
121-134. Plenum Press, New York, 1972.

J. Wilkinson and C. Reinsch. Handbook for Automatic Computation: Vol-
ume II - Linear Algebra. Springer-Verlag, New York, 1971.

David M. Young and Kang C. Jea. Generalized conjugate-gradient acceler-
ation of nonsymmetrizable iterative methods. Lin. Alg. Appl., 34:159-194,
1980.

32

